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Abstract
Biological and other complex networks are generally believed to be hierarchically
organized. High-throughput molecular sequencing technologies now make it possi-
ble to reconstruct large-scale biological networks based on different types of data
at the genomic, transcriptomic, epigenomic, proteomic and metabolomic levels. A
crucial task is to effectively integrate and analyze these different "views" of the data
to gain a systems-level understanding of biological components, processes, and their
functions. We here review recent advances in molecular data integration, multi-view
learning and multi-level hierarchical community detection in big data networks. We
then propose a novel method that integrates multiple views of similarities between
data points into a single network via a diffusion process, and detects communities
on multiple levels of hierarchy. On simulated data, we show that our approach is in-
deed able to capitalize on both common and complementary information contained
in multiple views for the identification of an underlying multi-level hierarchical com-
munity structure. We apply our method to gene expression, copy number aberration
and DNA methylation data from Glioblastoma Multiforme tumor samples to iden-
tify groups of genes that are highly co-regulated during disease progression. We
verify that the resulting community structure is indeed representative of biological
function by identifying various communities in which genes associated to known bi-
ological processes are highly overrepresented on statistically significant levels. We
visualize the resulting network based on its multi-level hierarchical structure to allow
for easy, intuitive exploration of the data.

Keywords: systems biology, cancer, data integration, multi-view data, network fu-
sion, community detection, multi-level hierarchy, overrepresentation analysis, com-
plex networks
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1
Introduction

“The computer is incredibly fast,
accurate, and stupid. Man is
unbelievably slow, inaccurate, and
brilliant. The marriage of the two
is a challenge and opportunity
beyond imagination.”

– Stuart G. Walesh, 1989

This chapter briefly introduces the reader to the topic of this thesis, introduces
general concepts and ideas, and reviews recent advances and emerging challenges.

1.1 Background

Biological cells contain a great variety of molecular structures, forming systems that
can be investigated as complex dynamic networks [Barabasi and Oltvai, 2004]. Novel
innovations in biotechnology, along with continually improving cost-efficiency of
high-throughput sequencing methods, have made available a plenitude of molecular
data for researching such systems [Metzker, 2010, Pe’er and Hacohen, 2011]. This
recent flood of data in biology, however, has led to stark disparities between our
technological ability to generate vast amounts of biomedical data and our capacity
to properly analyze and understand it [Sboner et al., 2011]. Thus, the age of "big
data" in biology has come with an ever increasing demand for efficient statistical
tools and computational methods to increase interpretability of data for clinical
research [Marx, 2013].
This section aims to introduce readers that are unfamiliar with the fields of systems
biology, cancer research and biostatistics to general ideas and concepts necessary to
understand current challenges in biological big data statistics and their application
to cancer data. Section 1.1.1 covers the foundations of systems biology. Section
1.1.2 discusses molecular profiling and data analysis in cancer research. Section
1.1.3 concisely explains the meaning of "Big Data" and its role in biological research.
Section 1.1.4 provides the reader with a general introduction to clustering methods.
Section 1.1.5 then extends the introduced concepts to network models. Section
1.1.6 presents the concept of multi-view data sets, and discusses how multiple views

1



1. Introduction

can improve our understanding of underlying data-generating processes. Readers
familiar with any of the above topics can likely skip the respective sections.

1.1.1 Systems Biology

Systems biology is a scientific disciple that aims to quantitatively model complex
biological systems. The following aims to cover important paradigms and issues in
the field.

1.1.1.1 Holism Versus Reductionism

Systems biology follows a holistic approach, based on the idea that the structure of
all components in biological systems and the dynamics of all their interactions need
to be investigated to be able to explain the system’s emergent function or behavior
[Loscalzo and Barabasi, 2011]. This holistic approach is usually contrasted with
traditional reductionism, which deals with complex systems by dividing them into
smaller parts that are each manageable to be analyzed on their own [Mazzocchi,
2012, Noble, 2008]. Hence, a reductionist biologist would aim to understand the
human body in the way that most of us will be familiar with from high school; a
collection of organs that all have a certain role, which are themselves made up of
certain types of tissue, which contains certain types of cells, which contain certain
organelles, which themselves are characterized by the molecular processes happening
inside them. The systems biologist, however, would try to answer a different ques-
tion: If we identify the structure of all molecules inside a human body and measure
the rate of sufficiently many respective molecular processes, can we reconstruct how
the whole human body functions?

1.1.1.2 A Renewed Interest

The goal of a fundamental systems-level understanding of biological systems has
been a recurrent theme in the literature since the early 20th century [Bertalanffy,
1931, Wiener, 1949]. Until recently, reaching this ambitious objective for the hu-
man body was considered unlikely or merely hypothetical by many. However, since
the launch of the Human Genome Project [Venter et al., 2001] and with the rise of
high-throughput sequencing methods, the systems approach to biology experienced
a dramatic increase in scientific attention. Sequencing a human’s whole genome can
give us useful information about the individual organism by providing us with the
set of all genes encoded in the DNA, the genotype. This, however, is not enough
to determine all the resulting observable characteristics of the individual, the so-
called phenotype. In order to be able to truly understand the genotype-phenotype
relationship in organisms, systems biologists yet have to reconstruct many complex
interactions and processes including genes, transcribed mRNA, proteins, metabo-
lites, and environmental conditions among many components [Kitano, 2002]. All of
these are active areas of research [Legrain et al., 2011, Wang et al., 2009, Wishart
et al., 2007, Turnbaugh et al., 2007].
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1.1.1.3 Prospects for Precision Medicine

The idea that measurable properties of biological tissue or body fluids can be indica-
tive of underlying mechanisms inside the body – including disease – can be traced
back to at least ancient Greece. By the middle ages so-called "pee charts", which
related the color, smell, and even taste of one’s pee to certain medical conditions,
were widespread [Nicholson and Lindon, 2008]. The resulting concept of person-
alizing treatment based on chemical measurements is the same as what precision
medicine aims to do today [Collins and Varmus, 2015]. With the advent of highly
efficient molecular profiling of patients’ tissue or body fluids, precision medicine has
recently become a much more exact science [Mirnezami et al., 2012]. Systems biology
stands a great chance at significantly improving its capabilities by uncovering in-
creasingly many biological mechanisms underlying certain changes in measurements
that are related to a disease.

1.1.2 Molecular Cancer Research

Cancer is a widespread and often fatal disease, affecting many people around the
globe. The availability of modern sequencing technologies and the resulting biomed-
ical big data have transformed the field of cancer research in the recent past. This
section is meant as an introduction to cancer research in general, and to how molec-
ular sequencing data is utilized to advance our knowledge on how cancer works and
on how it may be treated more effectively.

1.1.2.1 Cancer: A Deadly Disease

While most of this thesis is concerned with mathematics, statistics and program-
ming, it is important to keep in mind that the underlying data comes from real
people suffering from cancer, one of the deadliest diseases to human kind, affecting
the lives of many people around the globe. With over 8 million cases annually –
and trend increasing – cancer is the second leading cause of death worldwide, with
nearly 1 in 6 deaths being due to some kind of cancer [Ferlay et al., 2015]. This
implies a societal loss of about 196.3 million disability-adjusted life-years annually
[Fitzmaurice et al., 2015]. A better understanding of how cancer is caused, how
different types of cancer are related, and how cancer can be effectively treated in
individuals has the potential to save and improve millions of lives around the globe
in the future. This report is mainly concerned with the analysis of Glioblastoma
Multiforme (GBM), which is the most common and most lethal type of brain cancer
[Parsons et al., 2008].

1.1.2.2 Cancer Data Initiatives and Profiling Approaches

Cancer research is a large scientific field, and consequently there is an exponential
growth of related data originating from journal publications, genome-wide associ-
ation studies, protein-protein interaction surveys, epigenomics, immunomics, and
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many more. Due to the large amount and heterogeneity of available sources, the
storage, acquisition and analysis of relevant data poses a great challenge to bio-
statisticians [Pavlopoulou et al., 2015]. Out of the need for an orchestrated effort
to making cancer data easily accessible, some large-scale collaborative projects now
aim to provide well-annotated and structured databases. The Cancer Genome Atlas
(TCGA, Weinstein et al. [2013]) and the International Cancer Genome Consortium
(ICGC, Hudson et al. [2010]) are the most prominent examples of large databases
containing molecular data on sequenced cancer tissue. The TCGA database contains
reliable data on many GBM patients, and is therefore used in this study.
The fact that tissue samples from tumors are often not pure, but contain a significant
amount of non-tumor cells makes the analysis of molecular data in cancer non-
trivial. A common approach to obtain pure samples of cancer cells is to use cell
lines. This means that a sample from a tumor is grown in vitro (i.e. petri dishes),
with repeated subsampling by a small fraction of cells, so that the sample becomes
increasingly enriched in proliferating tumor cells. A drawback of this method is
that artificial in vitro growth of a tumor may change the biological function and
molecular make-up within the cancer cells [Kaur and Dufour, 2012]. The Cancer
Cell Line Encyclopedia (CCLE, Barretina et al. [2012]) is one of the most prominent
databases providing human cell line data for a large variety of different cancer types.
The Human Glioblastoma Cell Culture Resource (HGCC, Xie et al. [2015]) provides
cell line data specifically for GBM patients. A relatively new approach that has the
potential to overcome the sample purity problem is single-cell sequencing, which can
examine the molecular make-up of individual tumor cells and thus lead to a better
understanding of the function of single cells in their environment [Eberwine et al.,
2014, Navin et al., 2011].

1.1.2.3 Finding Meaning in the Data

The overall objective of analyzing molecular cancer data can be roughly divided in
two distinct goals. The first goal is to categorize patients by finding groups whose
molecular profiles are clearly distinct, which is known as cancer subtype discovery
[Dai et al., 2015]. The associated clinical data can then be compared across the
discovered groups of patients in terms of age, gender, habits, survival rates and re-
sponse to treatment with a range of drugs, just to mention a few. The classification
of patients based on molecular data, together with the knowledge of differences in
related patient data and clinical outcomes, can then be used to identify risk fac-
tors, to improve diagnoses, to personalize treatments, and to predict survival of new
patients [Yang et al., 2007, Iqbal et al., 2010, Van’t Veer and Bernards, 2008, Rosen-
wald et al., 2002]. The second goal of molecular data analysis in cancer research is
to gain a better understanding of how genetic lesions drive the phenotype of tumor
cells and contribute to disease progression [Kling et al., 2015]. This means that
characteristics of the cancer at hand (e.g. a certain mutation), need to be identified
and then related to changes of molecular profiles on different levels, such as gene
expression, copy number aberrations (CNA), methylation, microRNA (miRNA) ex-
pression, protein expression or changes in metabolism. If closely connected variables
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can be identified in the data analysis, they can be cross-referenced with manually cu-
rated databases about biological function. Finding such highly associated variables
in molecular profiling data of a certain cancer can help to detect new biomarkers
for disease diagnosis, to identify new drug targets, and to better understand the
dynamics of a certain type of disease in general [Kussmann et al., 2006, Yang et al.,
2012]. Integrative statistical analysis on a wide range of cancer patient data – as
proposed in this project – stands a great chance at improving our understanding of
most of the relationships mentioned above, and is thus an indispensable tool in the
fight against cancer.

1.1.3 Big Data

In the recent past, the digital revolution has brought forward a wide range of ground-
braking technologies, which make it easier than ever to produce and store vast
amounts of information [Freeman and Louçã, 2001]. With this has come the age of
"big data", which has great potential to transform society at large, and is arguably
already doing so [Walker, 2014]. While it is clear from its name that big data refers
to large volume of data being available about nearly every aspect of our lives, there
is more to it – it is now widely accepted that big data is characterized by "three
V’s": volume, velocity and variety [Gartner, 2001].

1.1.3.1 Volume

"Volume" refers to the fact that today there is large amounts of data available about
nearly every aspect of our lives, ready for analysis. For instance, the amount of
total Facebook posts that could be searched through the company’s Graph Search
was 2.5 trillion as of 2016 [Constine, 2016]. A similar trend can be seen in the data
generated by sequencing human genomes. Since the sequencing of the first entire
human genome [Venter et al., 2001], it is estimated that a total of 250,000 had been
sequenced by 2015. Considering the current growth rate (doubling every 7 months)
every human on this planet would be sequenced by 2024 [Stephens et al., 2015]. Even
considering Illumina’s more conservative estimate (doubling every year) or Moore’s
Law (doubling every 18 months), the amount of sequenced human genomes will at
least approach 100 million by 2025 [Regalado, 2014, Stephens et al., 2015]. Another
aspect to the large volume of molecular sequencing data is its high dimensionality,
with the human genome being comprised of approximately 35,000 genes, and the hu-
man proteome containing more than 100,000 different proteins [Horgan and Kenny,
2011]. This further increases the volume of biological big data and consequently
renders storage, distribution and analysis even more challenging. An important dif-
ficulty arising from big volume data in systems biology is that it cannot be easily
explored by simply "looking at the data". This problem is being tackled by trying
to detect certain structures in the data that can be categorized and visualized. A
basic explanation of such approaches is given in sections 1.1.4 and 1.1.5.
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1.1.3.2 Velocity

"Velocity" refers to the fact that there is a continuous stream of large amounts of
data being produced every day. For example, a total of about 4.75 billion Face-
book posts were added to the social network each day in mid-2016 [Fu et al., 2017].
New data is being generated faster than ever in the biological world as well. In
2014, more than 200,000 new human genomes were sequenced, and the amount of
molecular profiling data grows exponentially every year [Regalado, 2014]. For data
analysis purposes, this means that data sets can no longer be considered static. For
biologists, this increasingly fast stream of new incoming data means that computa-
tional analysis tools should be able to be scaled up easily and to be updated in real
time as new information becomes available [Marx, 2013]. This need for continuous
data processing is a great challenge that the age of big data has laid upon systems
biologists and biostatisticians.

1.1.3.3 Variety

"Variety" refers to the fact that more and more distinct types of data are now be-
coming available on the same subject. Examples from Facebook are that each user
can upload text statuses, images and videos, establish friendships with others, create
events, be part of groups, and message other people on the social network. Each type
of data can be utilized to learn more about the user, but novel strategies for effective
integration of the different data types have to be employed in order for the analysis
to be able to ultimately provide a better "big picture" of the user’s characteristics.
Again, systems biologists face a similar challenge [Hwang et al., 2005]. Molecular
sequencing techniques provide biostatisticians with a wealth of information on dif-
ferent types of molecular data, including the structure of the DNA, transcriptional
RNA expression, protein concentrations, and metabolite concentrations. For an
overview of such different "omics" data types, see table 1.1. The above data types
roughly describe different levels at which the genotype-phenotype relationship is
expressed, but there are countless complex feedbacks between many of the compo-
nents of these different levels, thus rendering a correct integration of various data
types in biostatistics immensely difficult [Joyce and Palsson, 2006]. A more detailed
explanation on integration of multi-view molecular data sets can be found in section
1.1.6. For medical applications, it can be helpful to also integrate clinical data such
as age, gender or behavioral habits (e.g. smoking) of the patients included in an
analysis. All the above examples show that systems biologists are confronted with
high-variety big data that is especially hard to deal with in an organized manner.

1.1.4 Machine Learning and Cluster Analysis

A long-held belief about the relationship between humans and computers was ex-
pressed by Stuart G. Walesh in his memorable quote presented at the beginning of
this chapter. Computers are incredibly fast, accurate and stupid, whereas humans
are slow, inaccurate and brilliant. Consequently, the combination of human intel-
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genomics &
epigenomics ∼ 25, 000 genes

transcriptomics ∼ 105 RNA transcripts

proteomics ∼ 106 proteins

metabolomics ∼ 104 metabolites

phenomics &
exposomics ∼ 108 compounds

metagenomics ∼ 1014 microorganisms

Table 1.1: Various "omics" molecular profiling data levels and their approximate
amount of variables [Gligorijević et al., 2016].

ligence and computers’ computational power is needed to solve difficult statistical
problems [Walesh, 1989]. In the age of big data, the question arises about what
to do if the data to be analyzed becomes too large and complex for even the most
brilliant human to be able to tackle the problem by telling his stupid computer what
to do. Machine learning tries to answer exactly this question: How can we make
computers do what needs to be done without telling them precisely how to do it?
[Samuel, 1959, Koza et al., 1996] Nowadays, machine learning is an immensely pop-
ular discipline in computer science, which uses methods from statistics to produce
algorithms that are able to "learn" about the structure of some input data, and use
the results for tasks such as prediction or categorization.

1.1.4.1 Supervised Versus Unsupervised Learning

The two main sub-fields of machine learning are supervised and unsupervised learn-
ing. The former tries to make inferences about some data with labeled responses,
whereas the latter does the same if labels are not available [Friedman et al., 2001].
The difference between the two can easily be understood using a real-world analogy.
For instance, when toddlers learn how to distinguish cats and dogs, they usually
do so under the supervision of their parents or other people. If they see or hear
either of the two animals, they will often be told which kind it actually is. What
the toddler sees or hears can be seen as the data input, and the parent can be seen
as the "teacher" who provides them with the correct label. With time, the toddler
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then learns how to distinguish and recognize cats and dogs in a supervised manner.
It is reasonable to believe, however, that with time a toddler would also be able to
distinguish between cats and dogs if nobody were around to supervise them by giv-
ing them the correct labels. With time, the toddler would recognize certain features
such as the shape of the snout or ears of the animals, or the sound of barking or
meowing. At some point, the toddler would probably come to the conclusion that
cats and dogs are two different types of animals. This process would then be called
unsupervised learning, or "learning without a teacher".
In molecular cancer data analysis, an example of a supervised learning task would be
to train a model to relate gene expression variables in a data set to the survival of the
patients by using clinical outcome (dead vs. alive, or days survived) as label. This
model could then be used to predict the survival of new cancer patients based on their
gene expression data from a tumor sample. An example of an unsupervised learning
task in molecular cancer research is trying to find previously unknown associations
between different types of molecules or genes. During disease progression, a group
of biological processes involving a certain set of genes could be deregulated in a
certain way. Finding this group of genes using unsupervised learning may then –
together with what is already known about those genes – shed some light on the
underlying biological processes and potentially on the cause of the deregulation. The
main goal of this thesis is to propose an approach to discover such groups of genes,
and to apply it to GBM data. Hence, the following discussion is concerned with
unsupervised learning methods suited for the task at hand.

1.1.4.2 Clustering Methods

One of the main tasks in unsupervised machine learning is finding clusters in the data
at hand. A cluster can be broadly described as a group of certain objects that are
more similar to each other than they are to objects belonging to a different cluster.
If these objects are described by a list of measurements, cluster analysis can be
defined as organizing the objects into groups based on some similarity measure on the
multidimensional space spanned by the available measurements [Jain et al., 1999].
Figure 1.1 shows an illustrative example of one of the most intuitive tasks – clustering
points in two-dimensional space based on their standard euclidean distance, where
a small distance between two points indicates a high similarity between them. In
the left panel the clustering task seems well-defined with tightly packed and well-
separated clusters. In the right panel, however, objects within each cluster tend to be
less similar (close) to the other objects in the same cluster, and the different clusters
do not seem to be clearly separated. While there still seem to be clusters existent
in the data, it is likely that some of the data points have been grouped into the
"wrong" cluster with respect to the true underlying data generation process. Since
there are many ways to define what it means for objects to be "similar" and since
the research goal in clustering usually depends on the underlying data, a plethora
of different algorithms have been proposed [Estivill-Castro, 2002]. The following
covers the most prominent approaches and some popular algorithms.
Centroid-based clustering algorithms usually take as fixed input the number of de-

8



1. Introduction

Figure 1.1: Two examples of clustering based on distance in two-dimensional space.
The left panel shows a relatively "easy" clustering task with clearly separated clus-
ters, while the panel on the left illustrates a harder example where clusters seem to
overlap.

sired clusters k. They then find the k points in the underlying space that form
the cluster centers (centroids) such that the sum of squared distances of all ob-
jects to their closest centroid are minimized. Popular centroid-based algorithm are
the k-means and the k-mediods algorithms [Lloyd, 1982, Kaufman and Rousseeuw,
1987].
Hierarchical clustering algorithms rely on the idea that any object should rather
be connected to a nearby object than to one at greater distance [Ward Jr, 1963].
Bottom-up hierarchical clustering algorithms start with a fully unconnected set of
objects and then iteratively connect the objects that are close to each other, until a
certain amount of connected components is found. In contrast, top-down hierarchical
clustering algorithms start with removing connections between the objects that are
furthest apart and then continue in the same fashion until a certain amount of
connected clusters is identified. Hence, in both bottom-up and top-down hierarchical
clustering algorithms the number of clusters in the data is generally determined by
a distance threshold for adding or removing connections. By letting the threshold
vary over the whole range of object distances, this produces a hierarchy of different
cluster sets identified at different values for the threshold. Some common hierarchical
clustering algorithms are based on the concepts of single-linkage, average-linkage
(UPGMA) and complete linkage [Murtagh, 1983].
Distribution-based clustering algorithms are based on the idea that objects in a
cluster should belong to the same probability distribution. Such algorithms make
an assumption on the type and number of the underlying distributions and then
maximize the likelihood of the data being generated by a mixture of them. While
assuming normal distributions is often a quite strong assumption on the data, a
popular choice are gaussian mixture models that are solved by the expectation-
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maximization (EM) algorithm [Reynolds, 2015, Dempster et al., 1977, Rasmussen,
2000].
Density-based clustering algorithms rely on the assumption that a cluster is an area
in which there is a higher density of objects in the underlying space than in the
cluster’s neighborhood [Kriegel et al., 2011]. This often implies that objects from
low-density regions are not assigned to a cluster and considered noise. Popular
density-based algorithms are DBSCAN, OPTICS and Mean-Shift [Ankerst et al.,
1999, Comaniciu and Meer, 2002]
In the last decades, a vast amount of clustering algorithms have been proposed for
different types of data and to accommodate for different shapes, densities, varying
sizes or overlapping clusters [Ertöz et al., 2003]. A few of those have been described
above, but a full review of the literature is not within the scope of this thesis. We
therefore refer the reader to Xu and Tian [2015] for a comprehensive, accessible
review of clustering techniques.

1.1.4.3 A Difficult, Subjective Task

The previous discussion has already been a prelude to the fact that clustering is
usually a quite difficult problem. Since the main goal of clustering is the formulation
of a hypothesis on the structure of the data at hand, algorithms require the user
to make assumptions about the hypothesis to be learned [Kotsiantis and Pintelas,
2004]. This generally amounts to deciding what constitutes a group of items that
are similar to all the other items within the group, and less similar to the rest.
Hence, the same set of items often needs to be grouped differently, depending on
the eventual goal of the user [Jain et al., 1999]. Another difficulty is that the
interpretation of clusters may be very hard, so the clustering algorithm should also
be designed to facilitate the analysis of the results that are obtained. Furthermore,
finding exact solutions to clustering problems is often computationally very intensive
since all or many pairwise similarities between the data points have to be processed
[Koziel et al., 2014]. If data sets become too large to be handled computationally
by exact algorithms, greedy heuristics or other approximate algorithms have to be
employed [Swamy and Shmoys, 2004]. For all the above reasons, clustering should
not be considered an application-independent mathematical problem, but rather
a somewhat subjective approach that needs to be examined in the context of its
ultimate use [Guyon et al., 2009].
Figure 1.2 shows an example of 1800 data points in two-dimensional euclidean space,
whose clustering is quite subjective, and where several different results are equally
viable without relying on any additional assumptions. The data set comprises three
groups of points X(upper left), X(upper right) and X(bottom) drawn from different distri-
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Figure 1.2: An illustrative example which shows that clustering is not a well-
defined task, but rather a subjective classification of data that depends on the
research goal.

butions 1. Hence, with respect to the data generation process, the best clustering
would retrieve three clusters of which each is mainly containing points of one of
these groups. An according solution is shown on the left panel of figure 1.2. One
may, however, argue that the two upper groups of points are quite similar, and that
their members should be considered to belong to the same cluster. This results in
the clustering shown in the central panel in figure 1.2. Another possible clustering
is shown in the right panel. While the lower group seems to be arbitrarily divided
into two parts here, this solution provides roughly equally sized clusters where points
within each one are closest to all other points within it. This third option is actually
the solution to the k-means algorithm for k = 3.
In this 2-dimensional example, the euclidean distance between two points gives rise
to a very intuitive similarity measure between points, and results can easily be vi-
sually assessed in a two-dimensional plot. When it comes to clustering patients or
their molecular profiling data in cancer research, however, it is often not clear what
actually makes two sets of measurements similar. With data on thousands of genes
or molecules for many patients, biostatisticians usually face the challenge to cluster
data in an underlying space of thousands of dimensions. This renders an intuitive
visualization or assessment of the results virtually impossible. Hence, similarity
measures on molecular data and the clustering algorithms to be utilized have to
be carefully chosen in the context of the origin of the data and the research goal.
Parameters and settings in those algorithms are then often chosen somewhat sub-
jectively or even arbitrarily so that the resulting clusters are considered meaningful
by the researcher.

1 Here, 300 of the data points are independently and identically distributed (i.i.d.) realizations

of a bivariate normal random variable X(upper left) i.i.d.∼ N2 (µ1,Σ), where µ1 =
[
0.42
0.7

]
and Σ =[

0.002 0
0 0.002

]
. Another 300 data points are distributed as X(upper right) i.i.d.∼ N2 (µ2,Σ) , where

µ2 =
[
0.58
0.7

]
. The remaining 1200 data points are uniformly distributed on the intervals [0, 1] and

[0.1, 0.3] in the first and second dimensions, respectively.
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Figure 1.3: Visual 3-D representations of three examples of real world networks,
plotted in Matlab. Left to right: a power grid, a network of email interactions, and
a protein-protein interaction network.

1.1.5 Network Modeling

A network is a set of objects which are connected to some or all of the other objects
in a certain way. They often arise naturally in the real world, and the scientific
study of networks has recently become hugely popular [Barabasi and Oltvai, 2004].
To illustrate a few examples of real-world networks, figure 1.3 shows (from left to
right) 3-D visualizations of the power grid of the western United States [Watts and
Strogatz, 1998], a social network of email exchanges at a Spanish university [Guimera
et al., 2003], and the largest cluster in a protein-protein interaction network in yeast
[Jeong et al., 2001].

1.1.5.1 Terms and Definitions

A network or "a graph" G(V , E) is a collection of nodes (or "vertices") V and a
set of edges E, which each connect two elements of V . In general, an edge can
connect a node with a different node or with itself. Each edge between a node i to
another node j can have a weight wij, which usually indicates the strength of the
connection between the two nodes. A graph is called unweighted if all of its edge
weights are the same (usually all equal to one). A graph with different edge weights
is referred to as a weighted graph. Graphs can also be directed, which means that
each edge represents an interaction of a specific direction from one node to another.
The degree of a node in a graph is the number of edges that connect the node to
others. In a weighted graph, the weighted degree is the sum of the weights of all
such edges. In a directed graph, there is an out-degree and an in-degree, which
only consider outgoing or incoming edges, respectively. The networks in figure 1.3
are unweighted and undirected, and nodes are colored by their degree, with blue
indicating a low degree and yellow indicating a high degree. The left panel of figure
1.4 shows a simple example of a weighted, undirected network consisting of nodes A,
B, C, D, E and F . Edges are labeled by their weight, and drawn with a thickness
that is proportionate to the weight. A connected component of a network is the set
of all points that can be reached from any node in the component by traveling along
existing edges. Hence, two different components of an undirected network are sets
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Figure 1.4: Three equivalent ways of describing a network. From left to right: A
visualization of nodes and edges, an edge list with weights, and an adjacency matrix.

of nodes that are not connected by any edges. It is important to note that while the
visualization in figure 1.4 is shown in two-dimensional space in a manner that makes
it easy to look at the network’s structure, the nodes have no actual fixed positions
– they could be moved anywhere and the network would still be the same. In this
thesis, only undirected networks are considered. Hence, throughout the remainder
of the discussion, all networks will be assumed to be undirected.
For purposes of computational analysis, networks are usually represented as either
an edge list or an adjacency matrix. In an edge list each row corresponds to an edge
of the network. For unweighted networks, there are two columns. Each row lists the
two nodes that are connected by the edge that this row corresponds to. In directed
networks, the order of the node entries in the two columns indicates that the edge
connects from the node in column one to the node in column two. If a network is
weighted, its edge list has a third column indicating the weight of each edge. An
adjacency matrix A of a network with n numbered nodes is an n× n matrix, where
each entry Aij corresponds to the edge between node i and node j. If no edge exists
between two nodes, then the corresponding entry in the adjacency matrix is set to
zero. In unweighted networks, an entry in the adjacency matrix is set to one if
the corresponding edge exists. In weighted networks, the entries of the adjacency
matrix are the weights of the edges. In directed networks, entry Aij corresponds
to the edge from node i to node j. In undirected networks, entries Aij and Aji are
the same. Consequently the adjacency matrix of undirected networks is symmetric
across its diagonal. The center and right panels in figure 1.4 show the edge list and
adjacency matrix representations of the network on the left. Whether an edge list
or an adjacency matrix is used for network analysis usually depends on the network
at hand and the goal of the analysis. Adjacency matrices normally make it easy to
process edge information in a structured way. For large networks where many of
the entries of the adjacency matrix are zeros (a so-called sparse matrix), adjacency
matrices often become prohibitively large. This problem can often be addressed by
using sparse data structures. Yet, the edge list format allows for a shorter and often
more intuitive description of the network in sparse settings, since only existing edges
are represented as rows.
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Figure 1.5: An example of communities detected in an unweighted network. Here,
node color indicates community membership.

1.1.5.2 Community Detection

Many real-world networks exhibit community structures [Girvan and Newman, 2002].
For instance, the people in different university departments could be considered
smaller communities within the larger university network. Detection of such commu-
nities is based on a similar idea as clustering. Intuitively, nodes within a community
should be strongly interconnected, whereas there should be fewer edges connect-
ing a node inside a community with nodes that belong to other communities. For
unweighted networks, this loosely means that there should be more edges "inside"
a community than edges connecting the community with the rest of the network
[Fortunato, 2010]. For weighted networks the same applies to the sum of all the cor-
responding weights. Figure 1.5 shows some communities identified in an unweighted
network.
Considering that the weight of an edge generally indicates the strength of the con-
nection between the objects that two nodes represent, a network directly supplies us
with the measure of similarity that is needed for clustering a set of objects. Hence,
clustering and community detection are conceptually one and the same problem.
It is therefore not surprising that community detection is often also referred to as
"network clustering" or "graph clustering" [Schaeffer, 2007]. The main difference
between the two tasks is that network nodes used for community detection do not
have a fixed position in any underlying space, whereas data points used in tradi-
tional clustering do not have defined connections to each other that would explicitly
embed them in a network [Zafarani et al., 2014]. Just as for clustering, a plethora of
algorithms have been proposed to find community structures in networks. The most
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common ones will be concisely presented in the following. For simplicity, we here
generally consider unweighted networks, although extensions to weighted networks
are often straightforward.
One of the oldest approaches to divide networks into communities – the minimum
cut method – is based on finding a fixed number of groups of nodes such that the
amount of edges between groups is minimized [Ford and Fulkerson, 1956]. A problem
with this approach is that the solution often amounts to separating individual nodes
from the rest of the network [Von Luxburg, 2007]. The ratio cut approach [Hagen
and Kahng, 1992] circumvents this problem by normalizing, for each community,
the number of "cut" edges between that community and the rest of the network by
the number of nodes in the community. Another popular method is normalized cut
[Shi and Malik, 2000], which instead normalizes each cut by the sum of all weights
inside the community. Both ratio and normalized cut, however, are computationally
very expensive.
A related, popular approach is spectral clustering, where standard clustering meth-
ods are applied to a relevant set of eigenvectors of the network’s Laplacian matrix
(the adjacency matrix, but with node degrees on its diagonal). It has been shown
that spectral clustering is able to solve relaxed versions of the ratio and normalized
cut conditions [Von Luxburg, 2007].
The Girvan-Newman algorithm [Girvan and Newman, 2002] relies on the concept
of edge betweenness centrality, the number of shortest paths between pairs of nodes
that run along a certain edge. If a network has a community structure, then many
shortest paths between nodes should run along the few inter-community edges con-
necting them, and thus such edges will have a high edge betweenness centrality.
The Girvan-Newman algorithm then iteratively removes the edge with the highest
value and re-calculates the new edge betweenness centrality values. As edges are
removed, this produces increasingly more connected components in a hierarchical
fashion until no edges are left. These connected components can be identified as the
communities of the network at any level of the resulting hierarchy.
Some other community detection methods are based on modularity maximization.
Modularity is defined as the difference between the fraction of edges within a cer-
tain group and the expected fraction if edges were randomly distributed [Newman,
2006]. Communities with a particularly high value are then found by modular-
ity maximization methods by employing approximate optimization algorithms. A
popular method for community detection using modularity is the Louvain method
[Blondel et al., 2008].
Other methods for community detection focus on the generative process underlying
network formation, with the stochastic block model being a popular choice [Holland
et al., 1983, Brownlees et al., 2017]. Finally, some community detection algorithms
focus on cliques – sets of nodes that are fully connected – within a network [Bron and
Kerbosch, 1973]. Since cliques can overlap, such algorithms generally find solutions
where nodes can be part of multiple communities. As for clustering, community
detection is a rather subjective task, and the choice of the right algorithm depends
on the type of network at hand, as well as the ultimate goal of the research project.
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1.1.5.3 Molecular Biological Networks

While the definition of many real-world networks such as social networks are often
intuitive, things become a little more complicated when it comes to molecular bi-
ological networks. In online social networks such as facebook, users are the nodes
and an edge may for example be drawn between them if they are friends. In a bio-
logical cell, there are many complex interactions of varying strength between genes,
proteins, metabolites and other components.
For instance, a certain gene can be transcribed as mRNA, which then codes for the
production of one or more proteins. Those proteins can be enzymes, which means
that they catalyze certain reactions in the cell and thus further have an influence on
metabolites. The rate of other metabolic reactions can then also be influenced by
the relative concentration changes inside the cell. There are also isoenzymes, which
are proteins of different structure which catalyze the same reaction, though often
at different rates. Furthermore, some reactions require a multienzyme complex –
consisting of multiple enzymes that are coded for by different genes – to be cat-
alyzed. Proteins can also be transcription factors (TFs), which means that they can
bind to a certain position on the DNA corresponding to some gene, and then either
promote or inhibit the transcription of that gene’s mRNA, which in turn results
in the production of further proteins. There are more molecular mechanisms con-
tributing to the function of a cell, but the clear take-away from the above examples
is that molecular biological data gives rise to complex networks, which are difficult
to describe with the established mathematical formalism in network science. While
it is possible to consider each gene, protein or other compound a node, and each
reaction an edge in a biological network, this does take into account the conditional
statements introduced by isoenzymes and multienzyme complexes, nor does it take
into account that reactions may involve multiple substrates or that enzymes do not
take part in reactions but are still necessary for them to occur. Since a complete
network on the level of a whole cell is virtually impossible to formalize, biologists
have generally resorted to describing networks on a certain type of compound or
mechanism, such as protein-protein interaction networks, gene regulatory networks,
gene coexpression networks, or metabolic networks [Rual et al., 2005, Davidson and
Levin, 2005, Stuart et al., 2003, Jeong et al., 2000].
When using molecular profiling data to reconstruct biological networks, a similarity
is usually defined between different molecular variables across the data of multiple
patients, using correlation or any other pairwise distance metric [Schadt, 2009].
Since most of the similarities between different variables are often nonzero but very
low, it is usually desirable to introduce sparsity in the resulting similarity matrix
in a way such that direct interactions are recovered from the data while distant
interactions or noise are filtered out [August and Papachristodoulou, 2009]. Multiple
approaches on how to tackle this challenge have been proposed, such as the graphical
LASSO [Friedman et al., 2008] and WGCNA [Langfelder and Horvath, 2008].
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1.1.6 Multi-View Data

Multiple views of data refer to the "variety" aspect of big data elaborated on in
section 1.1.3.3. The general idea is that often data of different types can be collected
about a certain object. Using a combination of those different types for a learning
method in a smart way can then help us identify certain characteristics of that object
with higher confidence.

1.1.6.1 The Promise and the Challenge

To illustrate the promises and challenges of using multi-view data for machine learn-
ing, let us shortly re-visit the Facebook example. Any user on the social network
can upload text statuses, images and videos, and react to such uploads of others in
certain ways. They can also establish friendships with other users, create events, be
part of groups, and directly message other people. Users may also describe them-
selves in a biographical section, and include data such as their age, gender, interests,
and places where they have lived, studied or worked. It is clear that each of those
different types of user data can be utilized to learn about what "kind of person"
the user actually is. The great promise of multi-view learning is that looking at all
different types of data should make it much easier for us to understand by which
characteristics we should describe the user, than by only looking at a single data
type. The grand challenge in integrating multiple views is devising smart learning al-
gorithms that make full use of the often complementary information in a structured,
algorithmic way despite the heterogeneity of the data. What actually constitutes a
"smart way" of integrating multiple views usually depends on the underlying data
and on how the different views relate to each other. Due to this, multi-view learn-
ing has recently become a very active field of research, with a diverse range of new
algorithms being proposed continuously [Bickel and Scheffer, 2004, Xu et al., 2013,
Zhao et al., 2017].

1.1.6.2 Multiple Views of Molecular Profiling Data

As already mentioned in section 1.1.5.3, molecular profiling data consists of different
types that can be described on different biological "omics" levels. Each biological
level, however, may still give rise to multiple data types, which can be considered
different views in data analysis. This is illustrated in figure 1.6. The genomic level
concerns the structure of the DNA, which is a pair of macromolecules that are tightly
held together and carry all the information needed to "instruct" any organism on how
to grow, develop, function and reproduce [Watson et al., 1953]. The transcriptomic
level describes the abundance of messenger RNA (mRNA) molecules in a cell, which
are used to distribute the information stored in the DNA to the ribosomes, where
they cause the production of certain proteins [Cooper and Hausman, 2004]. The pro-
teomic level refers to the abundance of proteins, which can have multiple functions,
such as being enzymes, being structural, or being regulatory [James, 1997]. The
metabolomic level is associated with the abundance of metabolites, small molecules
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Figure 1.6: An overview of different "omics" levels in systems biology, and the
sequencing data types (or views) that they give rise to.

that are used in reactions inside cells to various ends such as biomass production
or energy conversion [German et al., 2005]. The epigenomic level deals with re-
versible structural changes of the DNA or histones, which influence gene expression
without altering the underlying nucleotide sequence of DNA [Russell, 2010]. The
integration of data on such different "omics" levels has become an important goal
in systems biology [Gomez-Cabrero et al., 2014]. Therefore we here list some of the
most important data types and how they are obtained.
Structural variations on the genomic level such as mutations and copy number aber-
rations (CNA) can be detected by whole genome sequencing [Wheeler et al., 2008].
Gene expression and other mechanisms on the transcriptomic level such as alter-
native splicing or gene fusion may be uncovered by RNA-seq [Nagalakshmi et al.,
2008]. Another data type on the transcriptomic level is microRNA expression, which
regulates the translation of mRNA and can be profiled by miRNA-seq [Creighton
et al., 2009]. On the proteomic level, the concentrations of proteins can be revealed
by protein arrays or mass spectrometry [Melton, 2004, Domon and Aebersold, 2006].
On the metabolomic level, the concentrations of metabolites can as well be deter-
mined by mass spectrometry [Dunn et al., 2013]. On the epigenomic level, histone
modification can be identified by ChIP-seq, which makes it also possible to detect
relationships between the proteome and the genome by locating transcription fac-
tor binding sites [Johnson et al., 2007]. Another data type on the epigenomic level
is DNA methylation, which has an important role in gene regulation, and can be
described by bisulfite sequencing [Lister et al., 2009].
Other views of data that could be integrated are given by molecular profiling data
from different databases, which use distinct profiling techniques or distinct sam-
pling methods such as direct tumor tissue sequencing versus cell line sequencing. It
is also possible to integrate data from different types of cancer tumors or from dif-
ferent identified subtypes of the same cancer, to find shared mechanisms or specific
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differences across disease types. Different approaches to multi-view integration in
cancer research will be further discussed in the next section.

1.1.6.3 Different Types of View Integration in Cancer Data

The most common data integration task in cancer research is subtype identification
based on multiple views of molecular data [Gligorijević et al., 2016]. In this task, the
different patients are the "objects" that need to be clustered. Hence, any view for
which data is available for the chosen set of patients can be used to construct a view-
specific patient-to-patient similarity measure. The different view-specific similarity
measures then need to be integrated before or during the clustering process. Since
the number of patients in multi-view molecular cancer data sets is usually quite
small, and since patients can be quite intuitively interpreted as objects that may be
more or less similar, integrative subtype discovery can arguably be considered the
most straightforward multi-view integration task in molecular cancer research.
Another integration task in cancer research is clustering all the available molecular
variables based on their similarity across patients, especially if subsets of the patient
samples come from distinct backgrounds and need to be assumed to exhibit different
behavior. Then, these groups of patients become the multiple views of the data, and
the molecular variables become the objects to be clustered based on similarity. In
this case, the multiple views could be represented by two or more databases that use
dissimilar sequencing technologies or different sample treatment, such as TCGA’s
GBM tissue data and HGCC’s GBM cell line data [Weinstein et al., 2013, Xie et al.,
2015]. The views could also be considered different diseases or disease subtypes, such
as the four generally accepted subtypes of GBM [Verhaak et al., 2010]. Clustering
such molecular variables can, for example, shed light on which genes or molecules
interact in specific regulatory processes, and thus help characterize disease progres-
sion and identify appropriate therapeutical strategies. This integrative clustering
of molecular variables is usually a more challenging task than subtype identifica-
tion, since it is difficult to find a general, structured approach to simultaneously
assess similarities arising from data sets that have different meaning and underly-
ing generation processes. Furthermore, there are usually at least multiple thousand
molecular variables to be clustered. This limits the amount of methods that are
computationally feasible for clustering or makes it necessary to pre-select variables
to be included in the analysis based on some more or less subjective approach, and
further complicates an intuitive exploratory analysis of the results.
A more specific integrative task in cancer research is uncovering gene-gene associ-
ations from data types that can be related to a certain gene. Resulting gene-gene
association networks can be seen as an integrative extension of widely studied gene
co-expression networks, which relate genes to each other merely based on gene ex-
pression without attempting to integrate multiple views [Butte and Kohane, 1999,
Margolin et al., 2006]. In addition to gene expression on the transcriptomic level, it
is also possible to map copy number aberrations and mutations on the genomic level,
as well as DNA methylation on the epigenomic level directly to the corresponding
genes. This allows us to define genes as our objects to be clustered in patient space,
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with the above molecular profiling data types representing our different views to be
integrated. As opposed to clustering all molecular variables, the total number of
genes is much smaller and consequently we have the choice between a larger number
of clustering algorithms that are able to handle the task computationally. Further-
more, genes are quite well-annotated in terms of the molecular functions, biological
processes or cellular components that they are involved in, which facilitates further
analysis of any clusters identified in the data [Ashburner et al., 2000, Consortium
et al., 2012, Maglott et al., 2005, Hubbard et al., 2002, Harrow et al., 2012]. The
challenge in integrative gene-gene association clustering is that it is not generally
clear how the different data types can be effectively merged to give a big picture
of which genes are closely related to each other from any specific viewpoint, such
as molecular processes or biological function. While large groups of closely interre-
lated genes should be reflected in all data types, chain-reaction like processes that
transcend multiple omics layers will be virtually impossible to detect by clustering
approaches, and generally cannot be directly inferred from the data in view of the
large amount of noise in molecular profiling data [Arnold et al., 2013].
Due to the fact that multi-view exploratory analysis on molecular profiling data
shows great promise but also faces many difficult challenges, the next section will
establish a desirable framework for such analysis. Then, the following chapter will
review the broad spectrum of literature which has attempted to tackle some of the
arising challenges.

1.2 A Desirable Framework for Integrative Ex-
ploratory Molecular Data Analysis

This thesis aims to explore associations between different omics variables in tu-
mor samples of GBM patients. The goal is to enable cancer researchers to identify
biomarkers and to gain a better understanding of biological and molecular processes
related to the cause and progression of the disease. The previous introductory sec-
tions have demonstrated that integrative unsupervised learning in a biological con-
text and such high dimensional settings is a very difficult and often subjective task.
Thus, this section will describe a hypothetical optimal framework for exploratory
analysis of molecular variables in cancer research. In the following chapter, we then
review recent advancements that have been made towards fulfilling one or more of
the desired qualities listed below.
A highly desired property of approaches to identify associations between molecular
variables is the capability to integrate multiple views of omics data, as the true
underlying biological networks are formed by direct interactions that transcend vir-
tually all levels (see sections 1.1.5.3 and 1.1.6.2). To make full use of the wealth of
molecular data published by various profiling initiatives, it would also be expedient
if the approach were able to integrate data originating from different databases.
Furthermore, it would be advantageous if the approach were able to integratively
make use of identified subtypes within the available set of GBM patients, to prop-
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erly reflect differences in disease origin and progression across patient strata. While
an algorithm capable of effectively integrating all of the above data types would be
favorable, it has to be noted that the more omics data types are taken into account
the more difficult it becomes to devise a structured way of integrating them in a
meaningful manner. In addition, most data types are only available for a certain
subset of patients or genes, and therefore including many data types for integra-
tion often implies reducing the amount of samples available for network estimation
or clustering. When aiming to design a potent algorithm for exploratory integra-
tive omics data analysis, we therefore face a trade-off between using many distinct
data types to gain comprehensive coverage of molecular processes on different levels,
the possibility to integrate them in a reasonable way, and the amount of samples
available for robust estimation.
In addition to an effective integration of multi-view data, it would be desirable if
our approach could estimate similarities between molecular variables in a sparse
manner, since the true underlying networks are assumed to be formed by direct or
close interactions of only a handful of entities at a time. A sparse estimation of the
resulting statistical network would also facilitate exploratory analysis and biologi-
cal interpretation, and makes it possible to employ efficient community detection
algorithms for large-scale complex networks.
For easy interpretation of the results, it would be of benefit if communities were
detected in a hierarchical fashion, which would make it possible to investigate only
a handful of communities and their relationships to each other on any given level
of resolution. Annotation of genes and other entities in terms of biological pro-
cesses or molecular function also follows a roughly hierarchical structure from broad
terms such as "response to stimulus" to highly specific terms such as "mitochondrial
double-strand break repair via homologous recombination" [Consortium, 2014]. An
approach that detects communities in a hierarchical fashion would therefore also
make it possible to associate each resulting set of molecular entities with those
biological processes or molecular functions that are over-represented in their cor-
responding annotations [Mi et al., 2016]. Such a multi-level hierarchical clustering
method should be able to identify high-quality clusters that are biologically mean-
ingful across all levels of resolution, from very coarse to much finer partitions of the
data set at hand.
Optimally, such an unsupervised algorithm should also not require any fixed param-
eters that determine the number of clusters or the thresholds giving rise to different
levels in the hierarchy. This is because such information is not available prior to
an exploratory analysis of omics data, and there is no straightforward way to tune
parameters since correct labels are unknown.
It would be extremely difficult to simultaneously honor all of the desired qualities
that are listed above in a single algorithm. Therefore, in the next chapter, we focus
on a review of recently suggested approaches that attempt to tackle some of these
challenges separately.
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“The answers you get from
literature depend on the questions
you pose.”

– Margaret Eleanor Atwood

This chapter provides a broad overview of recent advances in unsupervised learning,
that are relevant to exploratory molecular data analysis in cancer research. Many of
the algorithms introduced here are not directly applicable to the data and aim of this
study, but are presented to give the reader an idea of what is currently feasible in
the domains of multi-view learning and multi-level hierarchical community detection.
While it is difficult to sort all the approaches into fixed categories (a hard clustering
problem!), the literature will be presented in the following order. Section 2.1 presents
unsupervised learning methods that have mainly been introduced to deal with multi-
omics integration, with a specific focus on cancer research. Section 2.2 introduces
hierarchical community detection methods for large-scale complex networks, that
show potential to be applied to networks estimated from molecular profiling data.

2.1 Unsupervised Multi-Omics Learning in Can-
cer Research

This section aims to serve as a concise survey of the most relevant and common
approaches to integrative unsupervised learning based on multiple views of omics
data. For more comprehensive reviews of the topic, we refer the reader to Kristensen
et al. [2014], Bersanelli et al. [2016], Gligorijević et al. [2016] and Huang et al.
[2017]. The methods presented in the following can often be assigned to multiple
categories of conceptual approaches. Here, the classification into different section
headlines is largely adopted from the latter reference, but it is important to note
that there is often overlap between the different sections. Section 2.1.1 introduces
matrix factorization approaches, section 2.1.2 presents methods based on analysis
of correlation and covariance, section 2.1.3 covers bayesian methods, section 2.1.4
focuses on network-based approaches, and section 2.1.5 explains a few multiple kernel
and multi-step procedures.
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2.1.1 Matrix Factorization Approaches

Some of the most intuitive methods for unsupervised omics integration are based on
Non-negative Matrix Factorization (NMF). NMF aims to represent a non-negative
data matrix in a lower-dimensional space by decomposing it into non-negative load-
ing and factor matrices, such that the reduced-dimension decomposion still captures
as much of the variation in the data as possible [Lee and Seung, 2001]. Zhang et al.
[2011] suggested Sparse Network-Regularized Multiple Non-negative Matrix Factor-
ization (SNMNMF) for omics integration, where data matrices from multiple views
are represented in a common lower-dimensional space with the requirement that all
views to be integrated have to share the same non-negative factor. The authors used
the method to identify perturbed pathways by integrating gene expression, methy-
lation, and miRNA data from ovarian cancer patients and finding heterogeneous
variables weighted highly in the same projected direction [Zhang et al., 2012]. The
drawbacks of this method are the high computational complexity and memory re-
quirements of NMF, and the fact that it requires carefully normalized, non-negative
input data. An implementation of their NMF-based algorithm is available on the
author’s webpage1.
Similarly to NMF, iCluster [Shen et al., 2009] aims to represent multiple views of
the data in a joint latent variable space, but without the non-negativity constraints.
The joint latent variables are estimated by gaussian likelihood-based inference using
the EM algorithm. The authors successfully used iCluster for subtype discovery in
GBM [Shen et al., 2012]. A software implementation is available as an R package
with the same name [Shen, 2012]. A drawback of iCluster is that the algorithm is
quite time-consuming, and consequently patient samples or genes need to be pre-
selected to make an analysis computationally feasible. iCluster+ [Mo et al., 2013]
is an extension of iCluster that allows for the integration of continuous, binary,
categorical, and sequential data by assuming distinct underlying distributions for
different views, including logistic, normal linear, multilogit, and Poisson distribu-
tions. The algorithm is implemented in the iClusterPlus R package [Mo and Shen,
2016]. A related approach is moCluster [Meng et al., 2015]. This method finds
joint latent variables using either a sparsity-inducing version of Consensus Princi-
pal Component Analysis (CPCA) [Wold, 1987, Westerhuis et al., 1998] or multiple
co-inertia analysis (MCIA) [Meng et al., 2014]. Then, any type of clustering may
be employed in the common reduced-dimensional space. The authors were able to
identify four subtypes of colorectal cancer by applying this method to methylation,
mRNA and protein data. The moCluster algorithm is implemented as part of the
R package mogsa [Meng, 2016].
Another NMF-based algorithm is Joint and Individual Variation Explained (JIVE)
[Lock et al., 2013]. JIVE decomposes the data into different low-rank matrices, in-
cluding one that approximately captures the joint variation across all views, one that
approximately captures the individual structured variation for each of the views, and
one that represents residual noise. The algorithm is an extension of Principal Com-
ponent Analysis (PCA), and also includes an L1 penalty for dimension reduction.

1http://zhoulab.usc.edu/\acrshort{SNM\acrshort{NMF}}/
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An application of JIVE on GBM tumor gene expression and miRNA data helped
the authors to characterize gene-miRNA associations and resulted in clinically use-
ful disease subtypes. Since JIVE is based on PCA, a drawback of the method is
that it is not robust to outliers. The method is implemented in the R package
r.jive [O’Connell and Lock, 2017]. Similarly to JIVE, a method called the Joint
Bayes Factor [Ray et al., 2014] decomposes the input data into joint, individual and
noise terms. In contrast to JIVE, the Joint Bayes Factor assumes shared loadings
for both individual and joint factors, and uses the student-t sparseness-promoting
prior [Tipping, 2001] to impose sparsity on those. Instead of using L1 penalties for
regularization, the model assumes a beta-Bernoulli process [Thibaux and Jordan,
2007, Ghahramani and Griffiths, 2006] for joint and individual factors. This ap-
proach makes it possible to extract features that are common to all data types as
well as view-specific features for subsequent analysis. A drawback of the Joint Bayes
Factor is that it assumes linear relationships between the latent variable and the ob-
servational spaces, and that it requires very high concordance between the different
views of the data [Huang et al., 2017]. A software implementation is available on
the author’s webpage2.

2.1.2 Correlation and Covariance-Based Approaches

Canonical-correlation analysis (CCA) [Hotelling, 1936] is a traditional method to
infer the linear relationship between two multidimensional variables, by finding lin-
ear combinations of the multidimensional entries which have maximum correlation
with each other [Härdle and Simar, 2007]. CCA and related approaches have been
modified in many ways to accommodate for molecular data integration of two and
sometimes more views. To this end, penalization and regularization terms can be
included for both stable and sparse calculation of loading factors. Modified ap-
proaches for L1-penalized sparse CCA (sCCA), as well as elastic net CCA have
been proposed to integrate two views of data and simultaneously increase biological
interpretability due to the introduction of sparsity [Parkhomenko et al., 2009, Wit-
ten and Tibshirani, 2009]. Both are implemented in the R package PMA [Witten
et al., 2013]. Additional CCA approaches for high-dimensional data have been sug-
gested to consider the joint effects of groups of variables, which are selected based
on prior biological information [Chen et al., 2012, Lin et al., 2013]. The algorithms
have been used to study associations between nutrient intake and bacterial abun-
dance in human gut microbiome data, and to uncover relationships between single
nucleotide polymorphisms (SNPs) and gene expression in human gliomas.
Partial Least Squares (PLS) is a similar approach to CCA, but instead of focusing
in correlations, it aims to find the loading factors that maximize the covariance.
This makes PLS-based approaches less likely to suffer too much from outliers in
the data [Huang et al., 2017]. The sparse PLS solutions analogous to sCCA and
elastic net CCA have, however, been shown to perform similarly to their correlation-
based counterparts [Lê Cao et al., 2009]. Sparse Multi-Block Partial Least Squares
(sMBPLS) [Li et al., 2012] extends PLS to more than two types of data by using a

2https://sites.google.com/site/jointgenomics/
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Figure 2.1: An illustration of how the precision matrix can often provide more
useful information about the underlying system than the covariance matrix. Non-
zero entries in the precision matrix of a chain harmonic oscillator represent direct
interactions via a spring connection.

weighted sum of latent variables of those views in their objective function. The ap-
proach was used to discover multi-dimensional regulatory modules in ovarian cancer
across data on the CNA, methylation and miRNA levels. An implementation of the
algorithm is available on the author’s webpage3.
Another important covariance-related task in molecular data analysis is the esti-
mation of the inverse covariance matrix (or precision matrix). This is due to the
fact that the precision matrix contains the partial correlations between the variables
under consideration. Under the assumption that the underlying data is normally
distributed, this implies that entries are zero if and only if the two corresponding
variables are conditionally independent [Das et al., 2017]. Hence the non-zero entries
of the precision matrix indicate direct interactions between two variables, which are
often of high relevance to researchers. Figure 2.1 illustrates this by considering a
one-dimensional chain harmonic oscillator, where five particles with unit mass are
coupled to each other by springs with the same spring constant k between two fixed
walls as shown in the upper panel. The lower two panels show the covariance and
precision matrices for the forces yi acting on the respective particles, where T is
a physical constant [MacKay, 2006]. While the covariance matrix is difficult to
interpret since covariances between all variables are positive, the off-diagonal non-
zero values of the precision matrix clearly indicate direct interactions between the
corresponding particles (i.e. a connection via a spring).
Since the normality constraint virtually never holds exactly for real-world data, no
entries of the inverse of an empirical covariance matrix become zero in practice.
Furthermore, since high-dimensional data sets such as those encountered in omics
research generally exhibit nearly perfect multicollinearity, the precision matrix is
near-singular and thus its calculation is often not possible due to numerical insta-
bilities. Sparse Inverse Covariance Selection (SICS) copes with both problems by
estimating the precision matrix under sparsity constraints such as an L1 penalty

3http://zhoulab.usc.edu/\acrshort{sMBPLS}/
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[Dempster et al., 1977]. Given the data, the variables with the highest gaussian log
likelihood of being conditionally independent could then be selected as the non-zero
entries of the estimated matrix. Meinshausen and Bühlmann [2006] described an
approximate solution to this problem by essentially running an L1-penalized LASSO
regression [Tibshirani, 1996] on each row of the covariance matrix. The graphical
lasso was proposed by Friedman et al. [2008] as an exact solution to the problem.
The Joint Graphical Lasso (JGL) [Danaher et al., 2014] is an extension of the graph-
ical lasso that allows for the integration of multiple views of data by estimating mul-
tiple graphical models while encouraging similar topology and edge weights. The
problem is solved by maximizing a penalized log-likelihood with generalized fused
lasso or group lasso penalties, using an alternating directions method of multipliers
algorithm. The authors were able to identify differential edges between a graphical
model estimated from lung cancer gene expression data and from a control group.
The JGL algorithm is implemented in an R package of the same name [Danaher,
2013]. Kling et al. [2015] recently proposed a multi-view generalization of the graphi-
cal lasso for modeling genome-wide networks of multiple cancers and data types. The
method solves a log likelihood maximization problem with both a sparsity penalty
and a network differential penalty for different cancer types, while concatenating
data matrices of different omics levels, such as mRNA, miRNA, CNA, and methyla-
tion. The resulting networks have been shown to overlap well with known pathway
interactions, and have been successfully used to detect novel targets against brain
tumor stem cells [Kling et al., 2016]. While this "augmented SICS" method is very
useful for integrative exploratory data analysis, the inevitable multicollinearity in
the high-dimensional setting creates instability of estimation. Moreover, improved
scalability will be needed to deal with future big data. The results of this method
are publicly available online4, and a Matlab implementation is part of the supple-
mentary data5.

2.1.3 Bayesian Approaches

Bayesian methods in multi-omics integration can make biologically informed as-
sumptions on different views of the data with various underlying probability distri-
butions, and also on the specific relationships between the distinct views.
COpy Number and EXpression In Cancer (CONEXIC) [Akavia et al., 2010] is a
bayesian network-based method that integrates CNA and gene expression data to
identify aberrations that promote disease progression in cancer. The algorithm pro-
duces a ranked list of candidate driver genes (modulators) by finding those which
are correlated with respect to their differential expression and also present in sig-
nificantly abberant regions. CNA data helps determine the direction of the the
influence, which cannot be inferred from correlations in gene expression alone. The
authors used a CONEXIC-derived list of modulators in Melanoma data together
with gene set enrichment analysis (GSEA) [Subramanian et al., 2005] to identify

4cancerlandscapes.org
5https://academic.oup.com/nar/article/43/15/e98/2414280#supplementary-data
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driver mutations of the disease and the processes that they influence.
Multiple Data set Integration (MDI) [Kirk et al., 2012] is a bayesian method that
is capable of integrating data from a diverse range of data sets and data views si-
multaneously. The method uses a Dirichlet-Multinomial Allocation (DMA) mixture
model [Green and Richardson, 2001], using parameters describing the concordance
of the different data sets to capture relationships between these models. This im-
plies that the clustering results in each view of the data have an influence on the
clustering in all the other views. MDI is capable of discovering groups of genes that
tend to cluster together in one, some or all of the views. This means that associ-
ations between different clusters of genes can be related to a specific subset of the
underlying data views. The authors applied MDI to multiple Saccharomyces cere-
visiae data sets and focused on finding groups of genes that are co-expressed while
their protein products also appear in the same complex. A Matlab implementation
of MDI is available online6.
A related approach is Bayesian Consensus Clustering (BCC) [Lock and Dunson,
2013], which simultaneously models the dependence and the heterogeneity of the
the different data views. Similarly to MDI, it is capable of producing separate
clusterings which are encouraged to adhere to an overall consensus clustering. it
employs finite dirichlet mixture models modified for multi-view data and a Gibbs
sampling procedure for consensus clustering. The authors employ BCC for subtype
discovery, using gene expression, methylation, miRNA and proteomic data from of
breast cancer tumor samples. An R implementation of BCC is available on the
author’s webpage7.

2.1.4 Network-Based Approaches

Unsupervised integrative network models focus on associations or interactions be-
tween different molecular variables, and can be used for tasks such as detecting im-
portant genes in pathways, discovering communities of highly connected variables,
or describing disease-associated mechanisms (modules) [Huang et al., 2017].
PAthway Representation and Analysis by DIrect Reference on Graphical Models
(PARADIGM) [Vaske et al., 2010] is a probabilistic graphical model for inferring
genetic activities that are specific to patients, by making use of manually curated
pathway interactions between genes. The pathway data is used to determine whether
two entities such as protein-coding genes, small molecules, complexes, gene groups
or abstract processes should normally be correlated positively or negatively. All
entities are then used as nodes in a directed acyclic network, with pathway-derived
edges representing either expected up- or down-regulation. The actual interaction
between a pathway’s entities is measured by comparing levels of genomic variables
such as gene expression and CNAs. For each pathway, PARADIGM then calculates
a patient-specific score that represents how much the actual interaction between its
entities deviates from the expected value. The authors found that clustering GBM

6http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/
7http://people.duke.edu/%7Eel113/software.html
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patients based on their pathways that show statistically significant perturbations
resulted in a set of clinically relevant subtypes with significantly different survival
profiles. An implementation of PARADIGM is available online8.
Similarity Network Fusion (SNF) [Wang et al., 2014] is a method that constructs
patient-similarity matrices for each view of the data, and then fuses them into a
patient-similarity network. SNF first constructs a k-Nearest-Neighbor (kNN) pa-
tient network from each different view’s similarity matrix. Those "affinity matrices"
are then used to fuse the similarity matrices using a nonlinear method based on
message-passing theory [Pearl, 2014]. The patient-to-patient similarities are itera-
tively updated, until they converge to a common similarity network. In this process,
strong similarities that are supported by all or most types of the data reinforce each
other, while weak similarities that are considered noise fade away. The fused net-
work can then be used to identify subtypes among the patients by employing any
community detection algorithm, such as spectral clustering. SNF is also able to
identify which omics views of the underlying data support the existence of any edge
in the fused network, thus offering deeper insight into which biological mechanisms
could be responsible for the existence of distinct subtypes. The authors applied SNF
to methylation, mRNA and miRNA data of five different cancer data sets, and found
that the method was able to discover subtypes with statistically significant survival
profiles for all of them. The algorithm is available in the R package SNFtool [Wang
et al., 2017] and a Matlab implementation is available on the author’s webpage9.
The mathematics behind Similarity Network Fusion are discussed in detail in the
theory chapter (section 3.1) of this thesis.
Lemon-Tree [Bonnet et al., 2015] is an unsupervised algorithm aiming to reconstruct
module networks. The method builds an ensemble of co-expressed gene clusters by
repeatedly using a model-based Gibbs sampler [Joshi et al., 2007]. It then iden-
tifies consensus gene modules by clustering the pairwise frequencies of genes be-
longing to the same cluster with a spectral edge clustering algorithm [Michoel and
Nachtergaele, 2012]. Then, an individual additional candidate regulator view such
as miRNA, CNA and methylation can be added to the consensus module to esti-
mate a regulatory score calculated by a decision tree approach [Joshi et al., 2009].
The authors claim that Lemon-Tree performs especially well when attempting to
infer closely related short-path networks. Since regulatory scores are only able to
be assigned individually to distinct omics views, Lemon-Tree is unable to consider
causal relationships between different regulator types themselves. The software im-
plementation of this method is available online under a public license10.

2.1.5 Multiple Kernel and Multi-Step Approaches

Integrative methods that are carried out in multiple steps are often used to first infer
relationships between different views of molecular data, and to then relate them to
certain phenotypes [Ritchie et al., 2015]. Kernel methods make use of the so-called

8http://sbenz.github.com/Paradigm
9http://compbio.cs.toronto.edu/\acrshort{SNF}/\acrshort{SNF}/Software.html

10http://lemon-tree.googlecode.com
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"kernel trick"[Theodoridis, 2008]: kernel functions allow these methods to operate
in a high-dimensional, implicit feature space by only calculating the inner products
between the corresponding images of all pairs of data [Hofmann et al., 2008]. Due
to the fact that kernel-based data integration is often carried out step-wise, it makes
sense to present the two together here [Huang et al., 2017]. We present two relevant
examples in the following.
Multiple Kernel Learning for Dimensionality Reduction (MKL-DR) is a method
that uses multiple kernels to learn features in a reduced-dimensional common sub-
space [Lin et al., 2011]. Speicher and Pfeifer [2015] proposed an extension to this
method (called rMKL-LPP), which introduces a regularization term and uses Lo-
cality Preserving Projections (LPP) [He and Niyogi, 2004] to conserve the aggregate
distance for each sample’s kNN. The method is able to use a variety of kernels for
each omics view to learn features in a shared, reduced dimension and then cluster
multiple networks based on those features using a support vector machine (SVM)
or other traditional clustering methods. Applying rMKL-LPP to GBM gene expres-
sion, methylation and miRNA data, the authors found six disease subtypes that
captured similarities and differences in both established expression and methylation
subtypes, and gave better p-values for survival analysis than both iCluster and SNF.
A software implementation is available upon request from the authors11.
CNAmet [Louhimo and Hautaniemi, 2011] is a multi-step integration method for
CNA, methylation, and gene expression data, which aims to detect genes that are
either amplified in terms of CNA and also upregulated by hypomethylation, or
deleted and also downregulated by hypermethylation. In the first step CNAmet
links expression values to CNA and methylation data using the signal-to-noise ratio
statistic [Hautaniemi et al., 2004]. The second step consists of calculating a score
that captures which genes’ differential expressions are due to both changes in methy-
lation and CNA. The last step then derives adjusted p-values of the scores using a
permutation test. The authors used CNA, methylation and gene expression data
from GBM and ovarian cancer tumor samples to demonstrate that this approach can
help to characterize genes and to gain a better understanding of biological processes
during disease progression. CNAmet is available as an R package of the same name
under public license12.

2.2 Multi-Level Hierarchical Community Detec-
tion in Large-Scale Complex Networks

Hierarchical structures are ubiquitous in human societies and they are often con-
sidered necessary for an efficient governance of large organizations [Bavelas, 1950,
Weber, 1978, Frank, 1985, Van Vugt et al., 2008]. It has been pointed out in general
that the presence of a hierarchical organization makes complex systems especially
stable and robust, thus often resulting in a long-run evolutionary advantage [Simon,

11nora@mpi-inf.mpg.de or npfeifer@mpi-inf.mpg.de
12http://csbi.ltdk.helsinki.fi/\acrshort{CNA}met
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1991]. It is therefore not surprising that hierarchy and self-similarity on multiple
levels are often considered universal characteristics of complex biological networks
[Girvan and Newman, 2002, Ravasz and Barabási, 2003, Song et al., 2005] and that
hierarchy has been successfully explained as an emergent property of complex evo-
lutionary processes [Clune et al., 2013, Alcocer-Cuarón et al., 2014, Mengistu et al.,
2016]. The majority of community detection approaches, however, aim to find the
single "best" partition of a network. For our purpose of finding associations be-
tween molecular variables in omics data sets, as well as for various other purposes, a
method should instead be capable of recognizing hierarchical structures (if present),
and detect the corresponding levels of hierarchy [Sales-Pardo et al., 2007, Clauset
et al., 2007, 2008]. A convenient side-effect of the identification of such hierarchical
structures is that they are particularly intuitive to scrutinize and interpret at dif-
ferent levels of hierarchy in the framework of exploratory big data analysis. Figure
2.2 shows an example of such an approach applied to a social network of public
figures, where each node represents a person, and an edge is present between two
nodes if there exists a link from one of the two people’s Wikipedia page to the
other one’s [Biddulph, 2012]. Communities were detected using the Louvain algo-
rithm (see section 2.2.1). We note, for example, a prominent (light blue) cluster of
politicians, which is closely connected to the turquoise cluster of members of royal
families. The upper left orange cluster is mainly composed of fictional superheros
and comic figures. The clusters on the central to upper right are mainly formed
by sportspeople, yet subdivided into different communities of mainly male athletes
(blue), female athletes (purple) and specific disciplines such as football (yellow) or
golf and baseball (orange). The green cluster on the top contains musicians such as
Elvis Presley, Bob Dylan, Kanye West and Eminem. A further possible subdivision
is also recognizable, with the former two and the latter two falling into different sub-
communities. A cluster that is somewhat harder to interpret is the central yellow
one, which groups William Shakespeare, Albert Einstein, Jesus and Adolf Hitler into
the same community. Nevertheless it becomes clear from figure 2.2 that methods
capable of finding multi-level hierarchical community structures in networks have
great potential to help us gain a better understanding of the real-world processes
underlying big data sets.
This section predominantly focuses on the most popular and relevant approaches
that are able to identify multi-level hierarchical structures in large-scale complex
networks. Section 2.2.1 introduces modularity-based approaches, with a focus on
the Louvain method [Blondel et al., 2008]. Section 2.2.2 presents techniques based on
information theory, with a focus on the Infomap algorithm [Rosvall and Bergstrom,
2008]. Section 2.2.3 elaborates on relevant spectral clustering approaches, with a
focus on Multilevel Hierarchical Kernel Spectral Clustering (MHKSC) [Mall et al.,
2014]. Section 2.2.4 covers methods that rely on the statistical significance of com-
munities, with a focus on the Order Statistics Local Optimization Method (OSLOM)
[Lancichinetti et al., 2010].
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Figure 2.2: An example of communities detected in a large-scale social network
using the Louvain algorithm, based on Wikipedia pages about famous public fig-
ures (nodes) and links between their pages (edges). The figure is reproduced from
Biddulph [2012] under Creative Commons Attribution-ShareAlike 2.0 license (CC
BY-SA 2.0).
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2.2.1 Modularity Optimization Approaches

A popular choice for community detection is the maximization of the quality func-
tion modularity (Q) [Newman, 2004, Danon et al., 2005]. Modularity measures
the difference between the density of edges within communities and the expected
density for the same partition if edges were randomly distributed across the whole
network. Since the exact optimization of modularity is a computationally hard
problem, heuristics are required when dealing with large networks [Brandes et al.,
2006]. Newman [2004] and Clauset et al. [2004] proposed greedy agglomerative hier-
archical algorithms that start by assigning each node to different communities and
then iteratively merge those communities that maximize the resulting difference in
modularity ∆Q. Newman [2006] demonstrated that modularity can be expressed
in terms of the eigenvectors of a network-characteristic matrix. This led to a faster
and more effective spectral community detection method, which is, however, unable
to find hierarchical structures in networks.
A heuristic modularity-based community detection technique for large scale net-
works, which is able to detect multiple layers of hierarchy is Louvain. It was pro-
posed by Blondel et al. [2008] from the Université Catholique de Louvain, which
has given the algorithm its name. Louvain consists of two steps. In the first step,
all nodes are assigned a community using an efficient version of the agglomerative
∆Q-maximizing approach from [Clauset et al., 2004]. In the second step, a smaller
new network is constructed, in which nodes are now the communities detected in
the first step, and new edge weights are the sum of the weights of the edges between
nodes belonging to the respective two communities in the original network [Arenas
et al., 2007]. The two steps are then repeated until only a single community is
found. The authors demonstrate that Louvain is able to find high-quality solutions
in terms of modularity by applying the method to two large real-world networks –
a Belgian mobile phone network comprised of 2 million users and different language
communities, and a web graph of 118 million nodes. Louvain is publicly available
online13. While Louvain performs well on coarse levels of hierarchy where com-
munities are sufficiently large, it has been shown that the method suffers from a
resolution limit, meaning that it is unable to find small communities below a certain
size threshold even if they are unequivocally defined [Fortunato and Barthelemy,
2007, Good et al., 2010]. This is due to the fact that Louvain uses a global criterion
to decide what the network structure would be like if edges were distributed at ran-
dom. Networks with community structure, however, generally exhibit heterogeneity,
with edge densities varying locally [Guimera et al., 2004, Reichardt and Bornholdt,
2006]. Approaches aiming to overcome the resolution problem by using modified
definitions of modularity have been shown to still suffer from the resolution limit
[Fortunato and Barthelemy, 2007].

13https://sourceforge.net/projects/louvain/
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2.2.2 Methods Based on Information Theory

Information theory is mainly concerned with how information can be represented
and quantified [Cover and Thomas, 2012]. An important topic in information the-
ory is how data can be represented in a highly compressed way without loosing any
important details. An example of this is a relatively long text message that says
“Hahahahahahaha!”, but could be nearly perfectly compressed to “ha(×7)!”. In
this example, the information to be compressed is given by a sequence of letters or
other symbols. In network models, such sequences can be generated by a random
walk on the network diagram by sequentially recording the nodes visited. Various
community detection approaches rely on the idea that random walks on a network
provide a proxy for information flow on its topology [Ziv et al., 2005, Pons and
Latapy, 2005, Lai et al., 2010, Wang et al., 2013]. Such random walkers are sta-
tistically likely to spend long periods of time within certain highly interconnected
communities that are less strongly connected to the rest of the network. This prop-
erty can be used to find a (compressed) description of the random walk which is as
short as possible. In this framework, it has been shown that community detection
is equivalent to solving such compressed coding problems [Rissanen, 1978, Rosvall
and Bergstrom, 2007].
Infomap [Rosvall and Bergstrom, 2008, Rosvall et al., 2009] is a community detection
technique based on this information-theoretical framework. The method makes use
of a modified version of Huffman coding [Huffman, 1952], which saves space by
encoding common events using short codewords while using long codewords for
rare events. To detect communities, the network is described on two levels: each
community is assigned a unique identifier and all nodes are given a name that is
unique within their community, but node names can be re-used across different
communities. This is much like international phone numbers, where each country
is assigned a distinct dialing code. While phone numbers without that dialing code
are unique on each national level, they may not be on the international level if the
country code is omitted. The Infomap algorithm then finds the community partition
of the network that minimizes the expected description length of a random walk in
this two-level coding framework.
In Rosvall and Bergstrom [2011], the authors extend the Infomap algorithm to al-
low for an arbitrary number of hierarchically nested index codebooks that specify
movements between communities, sub-communities, sub-sub-communities, and so
on. The resulting multi-level hierarchical community detection method – called the
hierarchical map equation – minimizes the expected description length of a random
walk across those multi-level coding frameworks. The solution to the problem then
yields a multi-level hierarchical community structure of the network at hand. To
solve the minimization problem at hand, the authors developed a fast stochastic and
recursive search algorithm, which is implemented in C++ and available online14. An
advantage of the approach based on random walks is that they can easily be de-
scribed on both weighted and directed networks. The authors use their algorithm
to discover hierarchical organizations in a journal citation network of science, the

14http://www.mapequation.org/code.html
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global air traffic network, and the human disease network.

2.2.3 Kernel Spectral Clustering Methods

A popular choice in unsupervised learning are spectral clustering approaches [Chung,
1997, Ng et al., 2002, Zelnik-Manor and Perona, 2005], which obtain cluster assign-
ments from an eigen-decomposition of the Laplacian matrix of a similarity measure
between certain objects (see section 1.1.5.2). A difficulty with classical spectral
clustering methods is the requirement to construct a full similarity matrix for all
objects to be clustered, which limits such approaches to relatively small data sets.
This challenge can be overcome by Kernel Spectral Clustering (KSC) [Alzate and
Suykens, 2010], which relies on a formulation of kernel Principal Component Anal-
ysis (kPCA) [Schölkopf et al., 1998] in a dual-primal framework. Here, the "pri-
mal" and the "dual" refer to two different formulations of the same problem. This
framework relies on the "kernel trick" introduced in section 2.1.5, where the primal
optimization problem is formulated in a high-dimensional feature space, but the
kernel method only implicitly operates in that space by solving an easier, equivalent
problem in the dual. KSC formulates the primal weighted kPCA problem in the
context of least squares support vector machines (LS-SVMs) [Suykens et al., 2002],
which corresponds to an eigen-decomposition of a centered Laplacian matrix in the
dual. This eigen-decomposition results in a clustering model in the dual. Due to its
use of SVMs, the obtained model can provide cluster assignments for out-of-sample
observations. This out-of-sample extension makes it possible to train a clustering
model on a representative, smaller subset of the data at hand. KSC was first used
to detect communities in networks by Langone et al. [2012], but the associated com-
putationally expensive subset and model selection still rendered an application to
large-scale networks prohibitive. The proposal of a fast and unique representative
subset selection approach (FURS) [Mall et al., 2013] made it possible to apply KSC
to complex big data networks [Mall et al., 2013,]. While a KSC-based approach for
the detection of communities on levels of different resolution in large networks was
proposed by Alzate and Suykens [2012], those levels are determined by user-defined
values of a kernel parameter. Furthermore, communities identified on different lev-
els do not generally form a natural hierarchy, with nodes that belong to the same
cluster on one level being assigned to different clusters on a coarser level.
Multilevel Hierarchical Kernel Spectral Clustering (MHKSC) [Mall et al., 2014] is an
agglomerative method that generates a natural multi-level hierarchical organization
of large scale complex networks. The method creates two sub-networks that are
representative of the entire large-scale network’s hierarchical community structure
by employing the FURS subsampling scheme. These two sub-networks are used
as training and validation set, and are both about 15% of the size of the whole
network in terms of their number of nodes. MHKSC first trains a predictive KSC
model on the training set, which is able to project any possibly unseen node of the
full network into a weighted kPCA eigenspace that is indicative of the network’s
community partition. The algorithm then uses the predictive KSC model on the
nodes in the validation set, and creates an affinity matrix between those nodes’
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projections in the eigenspace by calculating their pairwise cosine distances. On
the ground level of the hierarchy, an initial distance threshold with respect to the
entries of the affinity matrix is defined. The node that has most neighbors within
that distance is identified, and that node together with all its neighbors form a
community. The indices corresponding to that community are removed from the
affinity matrix, and the procedure is repeated until the affinity matrix is empty.
Just as for Louvain, communities on the lower level of hierarchy are then treated
as nodes on the next-coarser level. For MHKSC, the affinity between two clusters
is taken as the average of all pairwise distances between them. The new distance
threshold is then chosen to be the mean of the minimum distances to each cluster’s
closest neighboring cluster. This agglomerative procedure is repeated until there is
only one community on the coarsest level of hierarchy. The resulting monotonously
increasing sequence of distance thresholds obtained from the validation set is then
used on the cosine distance based affinity matrix of the entire network. This results
in an identification of the multi-level hierarchical community structure of the whole
network at hand. An implementation of MHKSC using both Matlab and Phyton is
available online15. The mathematics behind MHKSC are discussed in detail in the
theory chapter (section 3.2) of this thesis.

2.2.4 Techniques Based on Statistical Significance

Methods focused on the statistical significance of clusters are based on the fact that
mere random fluctuations can account for larger-than-usual concentrations of edge
weights within some groups of nodes, which then clearly do not represent any mean-
ingful communities. Due to such fluctuations, many common community detection
methods identify communities even in purely random graphs [Hu et al., 2010]. The
issue of statistical significance of communities in networks is a research topic that
has emerged only recently, and few approaches have been suggested to define such
statistical significance or to use it in community detection algorithms [Spirin and
Mirny, 2003, Reichardt and Leone, 2008, Bianconi et al., 2009, Lancichinetti et al.,
2010].
The Order Statistics Local Optimization Method (OSLOM) [Lancichinetti et al.,
2010] is a stochastic community detection method that aims to avoid the resolution
limit problem of modularity-based approaches by relying on the statistical signifi-
cance of communities. It is based on the proposal presented by Lancichinetti et al.
[2010], which uses extreme and order statistics to define the significance of a node
cluster as the probability that a general community detection algorithm finds such
a cluster in a random network. OSLOM takes a user-defined significance threshold
as input. The method starts with a single-community significance analysis. To that
end, an initial single node in the network is picked at random, and then a certain
number of neighbors that are considered most significant are added to the commu-
nity. The algorithm then performs a two-step stochastic "clean-up procedure" on the
community, which is roughly described below. In step 1, it considers whether it is
possible to increase the significance of the community by adding external nodes. In

15https://www.esat.kuleuven.be/stadius/ADB/mall/software\acrshort{MHKSC}.php
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step 2, non-significant nodes are pruned. The community is considered significant
by the clean-up procedure if it results in a non-empty set of nodes, and insignificant
otherwise. To obtain a robust estimate, the clean-up procedure is repeated multiple
times, and the overall significance of the single community is determined by the
majority of outcomes. To obtain multiple communities and to explore different re-
gions of the network, the above-described single-community significance analysis is
performed repeatedly for different randomly picked initial nodes, until similar com-
munities are found over and over again. The result is a set of usually overlapping
communities. Those communities are then reduced to significant minimal commu-
nities, which means that they exhibit no significant internal community structure
themselves. To obtain a reasonable cover of the network, unions of minimal com-
munities are checked for significant sub-communities and merged if none exist. In
addition, out of highly similar communities the larger ones are picked. The whole
procedure up to here is then again repeated multiple times to find a consensus
cover of the network. This consensus cover represents the solution to the OSLOM
algorithm.
The OSLOM method is able to handle directed, weighted, and time-dependent (dy-
namic) networks, and it can identify overlapping communities. It is also capable
of detecting multi-level hierarchical structures by employing the same strategy as
the Louvain method, where community detection is repeatedly applied to networks
on coarser levels of hierarchy, in which nodes correspond to the communities on
the closest finer level. Again, this multi-level hierarchy detection procedure is re-
peated multiple times in OSLOM to provide a stable consensus solution. A C++
implementation of the OSLOM method is available online16.

16http://www.oslom.org
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Theory

“Mathematics is the art of giving
the same name to different things.”

– Jules Henri Poincaré

The exploratory data analysis approach proposed in this thesis makes use of the Sim-
ilarity Network Fusion (SNF) method that was briefly introduced in section 2.1.4,
as well as the Order Statistic Local Optimization Method (OSLOM) whose foun-
dations were presented in section 2.2.4. Multi-Level Hierarchical Kernel Spectral
Clustering (MHKSC), which was introduced in section 2.2.3, was also considered for
use on cancer data, and compared to OSLOM on simulated data. Therefore, this
chapter describes the underlying theoretical details of all three approaches. Section
3.1 discusses the mathematics of SNF. Section 3.2 provides a rigorous treatment of
MHKSC. Section 3.3 gives the theoretical details behind the assessment of signifi-
cance of communities and its use in OSLOM.

3.1 Similarity Network Fusion

SNF [Wang et al., 2014] is an integrative technique that is able to combine any
set of similarity matrices that are based on different views of a given data set by
taking advantage of both common and complementary information provided by
distinct views of the same data set. The method makes use of parallel cross-diffusion
processes, across kNN similarity graphs of the different views of the data, which
is inspired by a multi-view learning framework originally developed for computer
vision and image processing. The exact procedure for fusing the different similarity
matrices is rigorously described below, mostly following the notation in Wang et al.
[2014].

3.1.1 Construction of Similarity Matrices

Consider a data set that consists of m different views φ = (1, 2, . . . ,m). Each view
is represented by an n × d(φ) data matrix, where n is the total number of patients
{1, 2, . . . , n}, and d(φ) is the the dimension of view φ, i.e. the view-specific number
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of variables that have been measured for all patients. The data of patient i in
view φ is denoted by x(φ)

i ∈ Rd(φ) , here assuming that all data is continuous. A
patient similarity network based on view φ of the data is then represented by a
graph G(φ)(V , E(φ)), where V = {v1, v2, . . . , vn} are the nodes representing the set of
patients, and E(φ) ⊆ V × V are the view-specific edges, which are weighted by how
similar the patients are according to view φ. Hence, edge weights for each view can
be represented by n× n similarity matrices W (φ), where each entry W (φ)

ij represents
the similarity between patients i and j in view φ. To calculate W (φ), the scaled
exponential Radial Basis Function (RBF) similarity kernel

W
(φ)
ij = exp

−x(φ)2
i x

(φ)2
j

µε
(φ)
ij

, (3.1)

is used, where µ is a parameter that can be set empirically, and ε
(φ)
ij is a scaling

parameter defined as

εφij =

1
n− 1

 n∑
l=1
l 6=i

√
x

(φ)2
i x

(φ)2
l +

n∑
l=1
l 6=j

√
x

(φ)2
j x

(φ)2
l

+
√
x

(φ)2
i x

(φ)2
j

3 . (3.2)

In other words, εφij is given by the average of the mean euclidean distance between
patient i and all its neighbors, the mean euclidean distance between patient j and
all its neighbors, and the euclidean distance between patients i and j. The authors
recommend to choose µ ∈ [0.3, 0.8]. While using the euclidean distance often makes
sense for continuous variables, the authors suggest using the chi-squared distance
for discrete variables and an agreement-based measure for binary ones.

3.1.2 Fusion of Similarities

For the computation of a fused similarity, first a full and sparse kernel on the nodes
V is defined for each view by
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The above normalization is chosen since it is free of the scale of self-similarity on the
diagonal, and still satisfies ∑n

j=1 P
(φ)
ij = 1. Denote by N (φ)

i,k the set of vi’s k nearest
neighbors in G(φ), including itself. Then, for each view φ, local affinity is measured
by the kNN affinity matrix

S
(φ)
ij =


W

(φ)
ij

2∑n

l∈N(φ)
i,k

W
(φ)
il

j ∈ N (φ)
i,k

0 otherwise.

(3.4)
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Here, the similarity of non-neighboring points is set to zero. The motivation be-
hind this is that strong, local similarities between nodes are more reliable in noisy
data than remote ones. Similarities to non-neighbors are then inferred by network
diffusion. We now consider an iterative diffusion process, starting with P (φ) (t0) =
P (φ) ∀φ ∈ {1, 2, . . . ,m} at time step t0, as defined in equation 3.3. We refer to
P (φ) (t) as the status matrix of the view φ at iteration t. SNF now repeatedly
updates the status matrices P (φ) for all views φ according to the recurrence relation

P (φ)(t+ 1) = S(φ) ×


∑m
ξ=1
ξ 6=φ

P (ξ)(t)

m− 1

× S(φ)T ∀φ ∈ {1, 2, . . . ,m}. (3.5)

This approach updates all the status matrices at each time step, thus generating m
parallel diffusion processes, which makes the status matrices of the different views
increasingly similar with more iterations. Since the S(φ) are kNN graphs of the
P (φ)(t0), similarity information of two nodes propagates only through the common
neighborhood, which makes SNF robust to noise and captures local structures of the
similarity networks. After each iteration, the P (φ)(t + 1) are normalized using the
same procedure as in equation 3.3. This ensures that throughout the SNF diffusion
process each patient is always most similar to himself, and that the final fused
network is full rank. Furthermore, the authors found that such normalization of the
status matrices leads to faster convergence of SNF. After a user-defined number of
iterations tmax, the final, fused status matrix is calculated as

P =
∑m
ξ=1 P

(ξ)(tmax)
m

. (3.6)

The authors showed that the status matrices corresponding to the different views
of the data usually converge within a few iterations of SNF. They recommend run-
ning SNF for about 10-20 iterations on real-world data. The final, fused status
matrix P can then be used for further unsupervised machine learning tasks. This
cross-diffusion process, which is here used for integrative omics analysis, is inspired
by the theoretical multi-view learning framework that was originally developed for
applications in computer vision and image processing [Wang et al., 2012]. In this
thesis, we use a step-wise procedure that uses a sparse version of the output from
SNF as the input for multi-level hierarchical community detection using OSLOM.

3.2 Multi-Level Hierarchical Kernel Spectral Clus-
tering

MHKSC [Mall et al., 2014] is a kernel method that finds multi-level hierarchical
structures in large, complex networks. It relies on the "kernel trick" by formulating
a primal weighted kPCA problem in the context of LS-SVMs, and solving it as
an eigen-decomposition of a centered Laplacian matrix in the dual, resulting in a
community detection model with a powerful out-of-sample extension. The model is
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trained on a representative subset of the whole network, and subsequently validated
on another representative subset. A partition of the entire network into communities
is then inferred using the out-of-sample extension based on the validation results.
The hierarchical structure is inferred in an agglomerative fashion, thereby providing
increasing distance thresholds that define the different levels of hierarchy. The exact
algorithm is rigorously described below, mostly following the notation in Mall et al.
[2014].

3.2.1 Predictive Kernel Spectral Clustering

This section describes the predictive Kernel Spectral Clustering (KSC) model, which
is used as part of MHKSC, but is itself not designed to find hierarchical structures.

3.2.1.1 Representative Subset Selection

Consider a network G(V , E), where the set of nodes is denoted by V and the set of
edges is denoted by E ⊆ V ×V . Let |V| denote the cardinality of V , i.e. the number
of nodes in the network. The first step of MHKSC consists of dividing the network
G into a training set Vtrain, a validation set Vvalid, and a test set Vtest. The sizes of
the training and validation set are fixed at |Vtrain| = |Vvalid| = d0.15 |V|e, based on
experimental results [Leskovec and Faloutsos, 2006]. The two sets are selected using
Fast and Unique Representative Subset selection [Mall et al., 2013], which greedily
selects nodes with high degree centrality. Such nodes are usually located in central
regions of communities rather than in the periphery, and are therefore representative
of the network’s inherent community structure [Kang and Faloutsos, 2011]. MHKSC
uses FURS to first select Vtrain from G, and then employs FURS again to select Vvalid
from nodes V\Vtrain, yet based on the topology of the entire network G. Hence, both
the training and the validation set are chosen to be representative of the community
structure of the large-scale network. Vtest is taken to be the entire network. Let
xi ∈ RN denote the adjacency list of node vi, which contains the weights of edges
connecting vi to nodes vj ∈ V =

{
v1, v2, . . . , v|V|

}
, and zero if no edge exists. Then

the data underlying the training set Dtrain = {xi}|Vtrain|
i=1 can then be efficiently used

in memory since |Vtrain| � |V| and since real-world networks are usually sparse.

3.2.1.2 Primal Formulation

We now present the primal formulation of the weighted kPCA using the "kernel
trick". In the following, bold variables represent column vectors. Let K (·, ·) be
a kernel function with an associated feature map ϕ : R|V| → Rdh . Here, Rdh is
a kernel-induced high-dimensional inner product space that the method implicitly
operates in. We can define a kernel matrix Ω with respect to Dtrain by letting
Ωij = K (xi,xj) = ϕ (xi)T ϕ (xj) since that makes K (·, ·) a proper inner product
on Rdh and therefore ensures positive definiteness. Let DΩ ∈ R|Vtrain|×|Vtrain| be the
diagonal and positive degree matrix associated to Ω, which is used as weighing
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matrix for kPCA. Weighted kPCA then finds directions w in which the accordingly
weighted variance of the projected variables wTϕ (xi) is maximized. The choice of
DΩ for weighting is based on the idea that high-degree nodes are generally more
representative of the community structure in a network [Alzate and Suykens, 2012].
Let Φ =

[
ϕ (x1) ϕ (x2) . . . ϕ(x|Vtrain|)

]T
be the |Vtrain| × dh feature matrix with

respect to Dtrain. Then, considering a maximum amount k(max) of eigenvectors that
we want to include, the primal formulation of the weighted kPCA problem becomes

min
w(l),e(l),bl

1
2

k(max)−1∑
l=1

w(l)Tw(l) − 1
2 |Vtrain|

k(max)−1∑
l=1

γle
(l)TD−1

Ω e
(l)


such that e(l) = Φw(l) + bl1|Vtrain|, l = 1, 2, . . . , k(max) − 1

(3.7)

where e(l) =
[
e

(l)
1 e

(l)
2 . . . e

(l)
|Vtrain|

]T
are the projections onto the eigenspace, bl are

bias terms, γl ∈ R+ are regularization parameters, and the indices l = 1, . . . , k(max)−
1 represent the number of score variables required to encode the k(max) clusters
[Alzate and Suykens, 2010]. Here, 1n denotes a of length n whose entries all all
equal to one. Now, the clustering model in the primal is given by

e
(l)
i = w(l)Tϕ (xi) + bl, i = 1, 2, . . . , |Vtrain| . (3.8)

For each node vi ∈ Vtrain, its community membership is then binarily encoded in
the sequence

{
sign

(
e

(l)
i

)}k(max)−1

l=1
. Indicators for any user-defined number k ≤ k(max)

of communities can, for example, be obtained from these sequences using the Error
Correcting Codes (ECOC) method [Baylis, 1997]. A technique that tunes k in
MHKSC is presented in section 3.2.1.4.
MHKSC uses the kernel function K : R|V| ×R|V| → R defined by K(x,y) = xT y

‖x‖ ‖y‖ ,
which means that the pairwise cosine similarities between adjacency lists provide
us with the entries Ωij = xTi xj

‖xi‖ ‖yj‖ of the kernel matrix. Using this positive definite
normalized linear kernel functionK is convenient, as it means that it is not necessary
to choose any user-defined kernel parameter. In this framework, we can set dh = |V|
and utilize the explicit expression of the underlying feature map ϕ for large networks
[Mall et al., 2013].

3.2.1.3 Dual Formulation

We now relate the primal formulation above to the dual problem. Consider the
Lagrangian

L
(
w(l), e(l), bl,α

(l)
)

= 1
2

k(max)−1∑
l=1

w(l)Tw(l) − 1
2 |Vtrain|

k(max)−1∑
l=1

γle
(l)TD−1

Ω e
(l)

−
k(max)−1∑
l=1

α(l)T
(
e(l) − Φw(l) − bl1|Vtrain|

)
,

(3.9)
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of the primal optimization problem 3.7, with Lagrange multipliers α(l). Given a
positive definite kernel function, positive regularization Karush-Kuhn-Tucker (KKT)
optimality conditions [Karush, 1939, Kuhn et al., 1951], we obtain

∂L
∂w(l) = 0 =⇒ w(l) = ΦTα(l)

∂L
∂e(l) = 0 =⇒ α(l) = γl

|Vtrain|
D−1

Ω e
(l)

∂L
∂bl

= 0 =⇒ 1T|Vtrain|α
(l) = 0

∂L
∂α(l) = 0 =⇒ e(l) = Φw(l) + bl1|Vtrain|.

(3.10)

Solving for the bias terms, we obtain

bl = − 1
1T|Vtrain|D

−1
Ω 1|Vtrain|

1T|Vtrain|D
−1
Ω Ωα(l), l = 1, 2, . . . , k(max) − 1, (3.11)

where we make use of the fact that ΦΦT = Ω. To be able to account for the bias
terms in condensed matrix notation, we define the centering matrix

MD = I|Vtrain| −
1|Vtrain|1T|Vtrain|D

−1
Ω

1T|Vtrain|D
−1
Ω 1|Vtrain|

. (3.12)

Eliminating the primal variables w(l), e(l), and bl from equations 3.10, we conclude
that the KKT conditions of equation 3.9 are satisfied by the eigenvectors of

D−1
Ω MDΩα(l) = λlα

(l). (3.13)

Since the KKT conditions are necessary but not sufficient for optimization of a not
necessarily convex objective function, the relevant components from the solution for
the eigenvectors α(l) need to be selected. Considering this, equation 3.13 is the dual
eigenproblem corresponding to the primal formulation in equation 3.7, where the
eigenvectors α(l) are the dual variables. The out-of-sample predictive model in the
dual for any unseen node v ∈ V \ Vtrain with adjacency list x is then given by

ê(l)(x) =
(l)∑
i=1

α
(l)
i K(x,xi) + bl. (3.14)

The predictive model can be validated using the representative subset Vvalid ⊂ V ,
or it can be utilized to detect communities in the entire network by applying it to
Vtest ⊂ V .

3.2.1.4 Optimal Number of Clusters

Note that while the above-described KSC method derives a clustering model that
allows us to identify at most k(max) communities in the network, it does not specify
which number of clusters is optimal. To overcome this, Mall et al. [2013] presented
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a self-tuned approach for the selection of the number of clusters k. The predictive
KSC model in the dual (equation 3.14) can be used on Vvalid to obtain the latent
variable matrix Pvalid =

[
e1 e2 . . . e|Vvalid|

]T
. Using Pvalid, the authors create the

non-negative affinity matrix

(Avalid)ij = 1− eTi ej
‖ei‖ ‖ej‖

, (3.15)

which assigns a value to each pair of nodes in the validation set by calculating the
cosine distance of their projections in eigenspace. This means that the entries of
Avalid corresponding to pairs of nodes which belong to the same community are very
small. Hence, the affinity matrix is approximately block-diagonal. To identify the
block-diagonal structure, a distance threshold t is defined. First, we find the index

argmax
i



|Vvalid|∑
j=1

1

(
t− (Avalid)ij

)
i∈{1,2,...,|Vvalid|}

 , (3.16)

of the node vi, which has most nodes at a cosine distance < t in the projected
eigenspace. Here, 1(·) denotes the function that takes the value 1 for positive num-
bers and the value 0 otherwise. Then, all nodes for which the cosine distance to
vi is smaller than t are considered to be in the same community. The rows and
columns corresponding to all the nodes in this community are removed from Avalid,
and the whole procedure is repeated until the affinity matrix is empty. For thresh-
old t, denote by k(t) the number of steps that this procedure took and denote by
s(t) =

(
s

(t)
1 , s

(t)
2 , . . . , s

(t)
k

)
the sizes of the communities that were removed from the

matrix. The ideal number of communities is found by using the notions of entropy
and balance with respect to the size of the communities. The Shannon entropy for
a set of communities of sizes s is defined as

H(s) = −
k∑
i=1

si
|Vvalid|

log
(

si
|Vvalid|

)
. (3.17)

The balance can be defined as

B(s) =
k∑
i=1

si
max (s) . (3.18)

To measure the quality of a community partition, the harmonic mean of entropy
and balance is used. This so-called F-measure is defined as

F (s) = 2H(s)B(s)
H(s) +B(s) . (3.19)

Then, a set of candidate distance thresholds T = {0.1, 0.2, . . . , 1} is taken into
consideration, and the optimal number of communities is calculated as

argmax
k

({
F
(
s(t)

)}
t∈T

)
. (3.20)

This approach is capable of determining the optimal number of clusters for a flat
partition of the network. An approach for extraction of multi-level hierarchical
structure is presented in the next section.
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3.2.2 Muli-Level Hierarchy Detection

MHKSC is a bottom-up, agglomerative scheme that uses the above-described KSC
methodology and extracts a monotonously increasing sequence of distance thresholds
T , which determine the partition of the network into communities at different levels
of hierarchies. We here refer to the affinity matrix of the eigenprojections of the
nodes in Vvalid on the ground level with most fine-grained community partition as
A

(0)
valid.

3.2.2.1 Selection of Distance Thresholds

The distance thresholds are evaluated using Pvalid, which was obtained from the
predictive model trained on Vtrain. The threshold at ground level t(0) is set to a fixed
value that results in a desired number of clusters at the finest level of hierarchy.
While t(0) is technically a subjective, user-defined value, the authors in Mall et al.
[2014] empirically found that t(0) ∈ [0.1, 0.2] works well for large-scale networks. If
t(0) � 0.1, the resulting community partition will include many singletons at the
ground level, whereas for t(0) � 0.2 most nodes would fall into one community,
resulting in one huge connected component. However, the exact value of t(0) should
be chosen to obtain a desired granularity at the ground level hierarchy, based on the
research goal at hand. Given a fixed value of t(0), first the node vi with maximal∑|Vvalid|
j=1 1

(
t(0) −

(
A

(0)
valid

)
ij

)
is identified. Then, the first cluster at the ground level

is defined as
C(0)

1,valid =
{
vj

∣∣∣∣ (A(0)
valid

)
ij
< t(0)

}
. (3.21)

The rows and columns corresponding to the nodes in C(0)
1,valid are then removed from

A
(0)
valid while keeping the indices of the entire affinity matrix. This procedure is re-

peated until the affinity matrix is empty, thus resulting in a ground-level community
partition C

(0)
valid =

{
C(0)

1,valid, C
(0)
2,valid, . . . , C

(0)
k(0),valid,

}
, where k(0) denotes the number of

communities on this finest level of hierarchy. To identify communities on the next
coarser level of hierarchy, a new network is constructed by treating each community
on the lower level as a node, with distances between clusters being defined as the
mean distance between their nodes. At each level h of the hierarchy, this results in
an affinity matrix A(h)

valid, which is defined by

(
A

(h)
valid

)
ij

=

∑
m∈C(h−1)

i,valid

∑
l∈C(h−1)

j,valid

(
A

(h−1)
valid

)
ml∣∣∣C(h−1)

i,valid

∣∣∣× ∣∣∣C(h−1)
j,valid

∣∣∣ . (3.22)

The distance threshold t(h) on hierarchy h is then taken to be the mean of the
minimum distances

t(h) = 1
k(h)

k(h)∑
i=1

min
j

({(
A

(h)
valid

)
ij

∣∣∣∣j 6= i
})

. (3.23)

This process is repeatedly applied until there is only one single cluster on the coarsest
level of hierarchy h(max). This provides us with a monotonously increasing sequence
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of distance thresholds T =
{
t(0), t(1), . . . , t(h

(max))
}
and with the corresponding hier-

archy of community partitions Cvalid =
{
C

(0)
valid,C

(1)
valid, . . . ,C

(h(max))
valid

}
.

3.2.2.2 Identification of Communities for the Whole Network

As noted in section 3.2.1.1, the set Vvalid is a representative subset of the entire
network V . Hence, it is possible to use the distance thresholds T to infer a multi-
level hierarchical structure on the entire network. To render the method self-tuned,
the thresholds t(h) ∈

{
t(1), t(2), . . . , t(h

(max))
}
> t(0) are used. The detection of each

community partition is then essentially done in the same manner as on the valida-
tion set. However, since the entire affinity matrix A(1)

test on the ground level of the
hierarchy of the test network is often too large to be stored in memory for large-
scale networks, MHKSC employs a greedy search to find a node vi with as large as
possible ∑|Vtest|

j=1 1

(
t(1) −

(
A

(1)
test

)
ij

)
. Then, the first community is again defined as

the set of nodes that have a distance smaller than t(1) to vi. The only exception to
that is given if a resulting community is too large to store its entire affinity matrix
in memory. In that case, the maximal community size on the ground level is limited
to the maximum possible number n(1)

max of nodes for which an affinity matrix can
be stored, and only the n(1)

max closest nodes to vi are added to the community. Be-
sides these constraints, the hierarchy of community partitions on the entire network
Ctest =

{
C

(1)
test,C

(2)
test, . . . ,C

(h(max))
test

}
is constructed in the same way as was done on the

validation set.

3.3 Order Statistics Local Optimization Method

The Order Statistics Local Optimization Method (OSLOM) [Lancichinetti et al.,
2010] is a community detection method aiming to avoid the resolution limit prob-
lem of modularity-based approaches by relying on the local statistical significance
of communities within their neighborhoods. The OSLOM method is able to han-
dle directed, weighted, and time-dependent (dynamic) networks, and it identifies
overlapping communities. The multi-level hierarchical structure is inferred in an ag-
glomerative manner, where community detection is repeatedly applied to networks
in which nodes correspond to communities on the closest finer level of the hierarchy.
The exact algorithm is rigorously described below, mostly following the notation in
Lancichinetti et al. [2010].

3.3.1 Statistical Significance of Communities

In OSLOM, the statistical significance of a particular community is defined as the
probability of finding that community in a null model that is given by a random
network without any community structure. The null model chosen here is the con-
figuration model [Molloy and Reed, 1995], which generates a network by randomly
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joining nodes under the constraint that the network’s resulting degree distribution
needs to attain a given pre-assigned shape.
Consider a network G(V , E), where V denotes the set of |V| = N nodes, and E
denotes the set of edges. Denote by C the community whose significance is to be
assessed. Consider also a node i /∈ C, which is considered for inclusion in C. Let mC
be the degree of C, which here means the sum of the degrees of all nodes included
in C. Let ki be the degree of node i, and let M be the degree of V \ (C ∪ i). Write
mC = min

C + mout
C , where min

C accounts for edges within C, and mout
C accounts for

edges that connect C to the rest of the network. Similarly, write ki = kini + kouti ,
where kini accounts for edges that connect i to C, and kouti accounts for edges that
connect i to V \ (C ∪ i). Denote by M? the internal degree of V \ (C ∪ i). Then, we
can write M = mout

C − kini + kouti +M?.
For weighted networks, OSLOM assumes that the probability of the existence of
an edge between two nodes i and j with a certain weight wij is separable in two
distinct terms in the configuration model [Radicchi et al., 2010]. The term for the
network topology and the ranking procedure for the significance of nodes in the
absence of edge weights is described in section 3.3.1.1. The inclusion of the term for
edge weights is described in section 3.3.1.2.

3.3.1.1 Topological Relations

The topological relation between a community and a node depends only on how
many edges exist between them, but not on their weights. Hence, we here describe
the definition of statistical significance for unweighted networks. The next two sec-
tions then describe how edge weights can be included in the significance assessment.
Assume that C is a community in a graph that was generated by the configuration
model with the constraint that each node maintains its degree as given in G. Then,
the probability of i having kini neighbors that belong to C is given by [Radicchi et al.,
2010]

p
(
kini
∣∣∣i, C, G) = A

2−kin
i

kouti ! kini ! (mout
C − kini )! (M?/2)! , (3.24)

where M? = 2E −mC −mout
C − 2ki + 2kini , and A is a normalization factor ensuring

that ∑
{kin

i ∈N | M?≥0}
p
(
kini
∣∣∣i, C, G) = 1. (3.25)

Let r(t) (kini ) be the cumulative probability of node i having ≥ kini edges that connect
it to the community C, so

r(t)
(
kini
)

=
ki∑

j=kin
i

p
(
kini
∣∣∣i, C, G) . (3.26)

If the probability in equation 3.26 is low for a node i, then the connection between
that node and the community C is unexpectedly strong with respect to the null
model, and the node should therefore be considered for inclusion in the community.
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The values of r(t) for different nodes can then be used to rank all nodes in E \ C
according to their probability of being part of C in terms of its topological association
to the group.
Since the node degree is a discrete value, however, the cumulative distribution has a
step-wise shape. To compare nodes with different degrees in this setting, a bootstrap
is implemented where in each run a value r(t)

i is assigned to each node i by randomly
drawing a number from the interval

[
r(t) (kini ) , r(t) (kini + 1)

]
. The variable r(t) ={

r
(t)
i

}
i∈V\C

captures the likelihood of the topological relation of each external node
with community C. For the null model, it takes the form of a random variable that
is uniformly distributed on the unit interval. Let nC be the number of nodes in C
and let r(t)

q be the value of r(t) with rank q in increasing order. Then the cumulative
distribution of the variable r(t) is given by

Ω(t)
q

(
r(t)

)
= p

(
r(t)
q < x

)
=

N−nC∑
i=q

(
N − nC

i

)
xi(1− x)N−nC−i. (3.27)

The values of the Ω(t)
q then carry information about how much each node in V \ C is

compatible with the topological statistics expected in the null model. For evaluation
of the entire group, define cm = minq

(
Ω(t)
q

(
r(t)

))
among all neighbors of C. The

distribution of cm is then tabulated numerically. It is denoted by P (cm < x) =
φ (x,N − nC) and called the "score" of the community C. Since the score is defined
as the minimum of the Ω-values, we also refer to it as the "best score" (bs).

3.3.1.2 Edge Weights

In the presence of edge weights, an additional variable r(w)
i is defined for each node

i in the neighborhood of C, analogous to the topological relation r(t). Define the
strength si of a node i as the sum of the weights of all edges that connect it to other
nodes. The assumption for the distribution of weights in the null model is then that
the weight of an edge is proportional to the average weight of the nodes that it is
connected to, which is defined as 〈wi〉 = si/ki. The cumulative probability of having
an edge with a certain minimum weight between two nodes in the null model is then
assumed to be

p (wij > x | ki, kj, si, sj) = exp
(
−x
〈〈wij〉〉

)
, (3.28)

where 〈〈wij〉〉 = 2 〈wi〉 〈wj〉 / (〈wi〉+ 〈wj〉) is the harmonic mean of the average
weights of nodes i and j. Here, the harmonic mean was used since it is more
sensitive to small values in 〈wij〉. Denote by N(C) the neighborhood of community
C, meaning the set of all nodes in V \ C that are connected to any node that is a
member of C. Consider now a node i ∈ N(C) and denote by l the number of edges
connecting it to C. Write the normalized weight of all these l edges as ωs = ws/ 〈ws〉,
where ws is the weight on the s-th edge for s = 1, 2, . . . , l. For the given value l,
define

Ψi =
l∑

s=1
ωs. (3.29)
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Ψi then follows the Erlang distribution since it is the sum of l exponentially dis-
tributed random variables [Evans et al., 2001]. The variable accounting for the
relation between node i and the community C with respect to edge weights is then
defined as the cumulative distribution

r
(w)
i = p(Ψi > x) = e−x

l−1∑
z=1

xz

z! . (3.30)

Just as r(t), the variable r(w) =
{
r

(w)
i

}
i∈N(C)

is then random uniformly distributed
on the unit interval for the null model.

3.3.1.3 The Combined Significance Score

If the network at hand is weighted, the topological variable r(t) and the weight-
related variable r(w) are used to form a combined score r(t,w) for each node i in
the neighborhood of C. A difficulty is that r(w) is defined on the set of those Nn

neighbors of C, but that r(t) is defined on all the N? = N −nC ≥ Nn nodes in V \ C.
Hence, r(t) is re-scaled to an equivalent random variable r′(t), which is defined on the
smaller sample of size Nn. Given an index i ∈ 1, 2, . . . , N?, this amounts to mapping
the variable to a new index j ∈ 1, 2, . . . , Nn such that the cumulative distribution
Ω(t)
q will coincide with the analogously defined cumulative distribution Ω(w)

q on the
subsample of the Nn nodes in the neighborhood of C. This is approximated by
re-scaling r′(t) according to

r′(t) = r(t)N
? + 1

Nn + 1 . (3.31)

For each node i in N(C), the combined score for ranking variables according to how
much they belong to the community is then computed as

r
(t,w)
i = p

(
r
′(t)
i r

(w)
i < x

)
, (3.32)

where r(t,w)
i = x(1− log x) in the null model, since it was assumed that the the two

different r-variables are independent and both random uniformly distributed on the
unit interval. The set of variables r(t,w) =

{
r

(t,w)
i

}
i∈N(C)

can than be used to rank
nodes and to compute their respective cumulative probabilities Ω(t,w)

q similarly to
the unweighted case, with the difference that here the distribution of the topological
term was re-scaled to fit the nodes in the neighborhood of C.

3.3.2 Single Community Analysis

We here describe the approach that OSLOM takes to optimize the significance score
of a single community C. The next section then presents how the significance of all
communities in the entire network is optimized.
OSLOM takes as input a significance level tOSLOM, below which a community score
is considered significant. The single community analysis consists of two steps. In the
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first step, vertices external to C are considered for inclusion within the community.
In the second step, non-significant nodes are removed.
In step one, for each node i in N(C), the variable r(t,w)

i is calculated. Then, for
the node m with r(t,w)

m = min
(
r(t,w)

)
, the score Ω(t,w)

1 is computed. In the case
that φ

(
Ω(t,w)

1

(
r(t,w)
m

)
, Nn

)
< tOSLOM, the corresponding node is added to C. In case

φ
(
Ω(t,w)

1

(
r(t,w)
m

)
, Nn

)
> tOSLOM the following next-best nodes are checked sequen-

tially. If then there exists some q-best node j for which φ
(
Ω(t,w)
q

(
r

(t,w)
j

)
, Nn

)
<

tOSLOM, all of the (1, . . . , q)-best nodes are added to C. If @i ∈ {1, . . . , Nn} :
φ
(
Ω(t,w)
Nn

(
r

(t,w)
i

)
, Nn

)
< tOSLOM, then no additional nodes are added to the com-

munity C. Denote the potentially larger community that is obtained after this first
node-adding step by C ′. In step two, for each node i ∈ C ′, the variable r(t,w)

i is
computed with respect to C ′ \ i. Then, the node v with the highest value is picked,
and its significance is checked by repeating step one for the sub-network C ′ \ i. In
case v is significant, it is kept inside community C ′, and there are no other nodes
to be removed since v was picked to be the node with the "worst" r-value. In case
v is insignificant, the node is removed from C ′ and the procedure is repeated by
searching for the "worst" node within C ′ \ v. This is repeated until at some point
the worst node identified proves to be statistically significant. The new community
without insignificant nodes is denoted C?.
This two-step "clean-up" procedure of a community C is not deterministic due to the
stochasticity in the computation of the cumulative probabilities r(t). Hence, single
community analysis needs to be repeated multiple times and a consensus result needs
to be formed from all runs. To this end, a participation frequency fi is calculated
for each node i, which is defined as the ratio between the times that i was included
in a non-empty community C? and the total number of runs leaving the resulting C?
non-empty. The final "cleaned" community is then considered statistically significant
if C resulted in a non-empty C? in more than half of the runs, and it contains all
those nodes for which fi > 0.5.

3.3.3 Network Analysis

For the identification of significant clusters on the entire network, OSLOM starts
with some randomly picked node i. Then, it joins node i into a community C
together with a certain number of q nodes among its neighbors that are considered
most significant. While q could in principle be picked arbitrarily, the authors chose a
power law with exponent −3. Then, single community analysis as defined in section
3.3.2 is performed on the community C. This procedure is repeated many times
for distinct initial nodes to explore all different regions of the entire network. This
results in a large set of the communities that were found in all of the runs. Define
two of those communities C1 and C2 to be similar if |C1 ∪ C2| /min (|C1| , |C2|) > P1.
Here, the authors chose P1 = 0.5. The OSLOM algorithm then stops exploring the
entire network when similar communities are found repeatedly.
The resulting collection of significant communities is a cover of the set V , but many
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communities overlap and are similar to each other. Hence, to obtain a reasonable so-
lution for the community structure, some of those communities have to be kept and
others have to be discarded. This is done by checking whether any community con-
tains any significant sub-communities or whether any group of distinct communities
forms a set of significant sub-communities within their union. Consider k commu-
nities {C1, C2, . . . , Ck}, as well as their union Cu = ∪ki=1Ci. If for the k communities
that were cleaned up with respect to Cu, it holds that

∣∣∣∪ki=1C?i
∣∣∣ < P2 |Cu|, then Cu

is discarded and the set of smaller communities are kept. Otherwise, all smaller
communities {C1, C2, . . . , Ck} are discarded, and their union Cu is kept. Here, the
authors chose P2 = 0.7.
Checking for significant sub-communities within each community in the above-
described fashion results in a set of minimal communities, which means that none of
them have a statistically significant internal community structure themselves. This
set of minimal communities still contains many similar ones, so for all pairwise sim-
ilar communities, their union is checked for significant sub-communities. If such an
internal community structure is not found, they are merged. Otherwise, the larger
of the two communities is kept, and the other one is discarded. In the case of equal
sizes, the community with the lower score is kept. The output of this procedure
is a sensible cover of the entire network. Due to the stochasticity of the method,
multiple covers are created in the above-described manner and eventually joined by
checking again for unions and similar communities, as described before. Nodes that
are found not to be a part of any significant community in the final results are left
as singletons and are called "homeless nodes".

3.3.4 Hierarchical Structure

Once the final covering of the network consisting of minimal significant commu-
nities has been found, the multi-level hierarchy is inferred in an agglomerative,
bottom-up manner. Starting from the base (finest) level, a new "supernetwork" is
constructed, where each of the communities on the finer level forms a "supernode"
on the coarser one. Two supernodes are connected by a "superedge" if the two re-
spective communities on the finer level are connected by some edge between any
two nodes within them. The weights of the superedges are assigned based on the
the sum of the weights of edges that connect the representative communities on the
finer level. Edges incident on nodes that are members of multiple communities on
the finer level contribute to the weights of the superedges of both communities on
the coarser level, but contributions are downscaled by the number of memberships
of the associated nodes. Consider an edge eij between nodes i and j, which are
members of communities Ci and Cj, respectively. If i and j belong to a total of vi
and vj different communities, then then the contribution of eij to the weight of the
superedge between Ci and Cj is given by wij/ (vivj). Once the new supernetwork
has been constructed on the coarser level of the hierarchy, the entire procedure for
finding communities is applied in the same way as for the base level. This procedure
is repeatedly used until the method finds no more significant communities in the
network on the final, coarsest level of the hierarchy. The final output of the method
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is then a set of potentially overlapping communities as well as homeless nodes on
each level of the inferred hierarchy.
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4
Methods

“Truth has nothing to do with the
conclusion, and everything to do
with the methodology.”

– Stefan Basil Molyneux

This chapter describes the methods used in this project. Section 4.1 presents an
evaluation of SNF, MHKSC and OSLOM on simulated data. Section 4.2 describes
the retrieval and pre-processing of the cancer data. Section 4.3 covers how simi-
larities between genes were estimated for each omics view of the data. Section 4.4
details how the similarities based on the distinct data views were fused to a single
network. Section 4.5 explains how the community structure of the network was
inferred on multiple resolutions. Section 4.6 describes the visualization method of
the final network, using its multi-level hierarchical community structure. Section
4.7 presents how gene communities detected in the network are related to biological
function.

4.1 Simulation Study

This section assesses the performance of SNF on multiple views of simulated data,
and compares MHKSC and OSLOM for detecting the multi-level hierarchical com-
munity structure. Since there is no universal definition of how both mutual and
complementary information in multiple views of data determine a multi-level hier-
archical community structure, we divide the simulation study in two parts. In the
first part, we construct nine different views of data in a symmetric fashion to obtain
a two-level hierarchy of three equally sized communities on the coarse level, which
each contain another three equally sized communities on the fine level. Here, each
cluster on the coarse hierarchy is present in three out of the nine views and each
cluster on the fine hierarchy is present in only a single view. This construction of
different views neither allows for unbalanced community sizes nor for different num-
bers of finer-level communities within the different coarse-level communities. Hence,
in the second part of the simulation study, we leave out the similarity fusion step
and directly construct a similarity matrix with a well-defined unbalanced hierarchi-
cal community structure to further compare MHKSC and OSLOM with different
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community sizes and non-symmetrical hierarchies. The simulation study was imple-
mented in MATLAB [version R2016b, 2016], calling the Python [version 3.6.0, 2016]
scripts included in the MHKSC-implementation published by Mall et al. [2014].

4.1.1 Fusion and Hierarchical Community Detection on Bal-
anced Data with Symmetrical Hierarchical Structure

To obtain multiple views with a clear multi-level hierarchical community structure,
we construct views in the form of nine distinct N × N similarity matrices S(i) i ∈
{1, 2, . . . , 9}, where N is divisible by nine. In the combined data, we place three
equally-sized coarse-level clusters, each of which contains another three equally-sized
fine-level communities. Our approach is described below and exemplified in figures
4.1 and 4.2.
Each community on the coarse level is given size Ncoarse = N/3, and is chosen to
be present in the data of three out of the nine views. In each of these three views,
this is achieved by drawing the entries corresponding to edges between the coarse-
level community and the rest of the network from a normal random distribution
N (0, σviews) with mean zero and variance σviews, while drawing values within the
coarse-level community from normal distributions with the same variance but higher
means. The similarity values for all edges between nodes not included in the coarse-
level community are drawn from N (0.2, σviews).
Each community on the fine level is given size Nfine = Ncoarse/3 = N/9, and is chosen
to be present in the data of only one out of the nine views. Similarly to the approach
for coarse-level clusters, this is achieved by drawing entries corresponding to edges
connecting the fine-level community and other nodes within the respective coarse-
level community from N (0.2, σviews), while drawing values within the fine-level com-
munity from a normal distribution with higher mean N (0.9, σviews). All remaining
values (i.e. those corresponding to edges between all nodes within the coarse-level
community but not within the fine-level one) are drawn from N (0.4, σviews). We
chose the above means of the different normal distributions in a way such that the
distribution of the simulated similarity values on the unit interval resembles the
distribution of the actual cancer data we used later in our application to GBM (see
figure 4.4 for a comparison).
We make the similarity matrices of all views symmetric by updating them according
to

S(i) ← S(i) + S(i)T

2 i ∈ {1, 2, . . . , 9}. (4.1)

Any values < 0 or > 1 are then wrapped back onto the unit interval and values on
the diagonal were set to one, giving

S
(i)
jk ←


1, j = k

−S(i)
jk , S

(i)
jk < 0

2− S(i)
jk , S

(i)
jk > 1

S
(i)
jk otherwise

i ∈ {1, 2, . . . , 9}, j, k ∈ {1, 2, . . . , N}. (4.2)
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Figure 4.1: The distributions from which entries in the different views were drawn,
here illustrated for view 1. For easy visual distinction of the different areas within
this matrix, we chose σviews = 0.1 in this illustration.

Any values that are still not within the unit interval after this update are assigned
a random value between zero and one. The different areas of the similarity matrices
corresponding to different random normal distributions are illustrated for view 1 in
figure 4.1. All resulting views are shown in the top nine panels of figure 4.2.
We here choose σviews = 0.3 and then use SNF to fuse the nine views of the data. For
affinity matrix construction, we choose the number of neighbors to be K = bN/10c,
which was recommended in Wang et al. [2014]. The RBF kernel parameter is set
to σRBF = 0.5, which lies within the range of values suggested by the authors, and
proved to result in informative affinity matrices. SNF is run for T = 15 iterations,
as suggested by the authors. The fused similarity matrix obtained by SNF is then
thresholded to keep the p = 5% of edges with largest weights. The resulting fused
and thresholded similarity matrix is shown in the lower left panel of figure 4.2. We
note that SNF successfully recovers the multi-level hierarchical cluster structure from
all nine views even though the views are chosen here to contain very little shared
and mainly complementary information. Furthermore, the top p percent of edges
effectively capture the community structure. For large-scale real-world networks it
should be possible to choose a significantly smaller p, since they usually contain

54



4. Methods

more communities on more levels of hierarchy and approximately follow power-law
degree distributions.
We apply both MHKSC and OSLOM to the fused similarity matrix. We tried differ-
ent base-level distance thresholds t0 ∈ [0.05, 0.25] for MHKSC, but these choices did
not significantly influence the quality of the results on the top two levels of hierarchy.
We ran OSLOM on a community significance level of σOSLOM = 0.1, as suggested
in Lancichinetti et al. [2011]. For obtaining OSLOM consensus partitions, we used
ten runs on the base level and 50 on higher levels. To quantify the quality of the
community detection results on each level of hierarchy, we used Normalized Mutual
Information (NMI, see Strehl and Ghosh [2002], Vinh et al. [2010]) between the
ground truth and the community results of the respective algorithm. The NMI be-
tween two clusterings is a value between zero and one, with higher values indicating
a better agreement.
The center bottom panel of figure 4.2 shows the result of an MHKSC run with
t0 = 0.15. Here, the similariy matrix is sorted by the community assingments found
by the algorithm. The red dashed lines indicate the community boundaries on
the coarse level of hierarchy, and the yellow dotted lines represent the community
boundaries on the fine level. We note that MHKSC finds the right communities
on the coarse level of hierarchy (NMI = 1), but that it splits the communities
on the fine level within each coarse cluster rather arbitrarily (NMI ≈ 0.70). In
this example, MHKSC finds an additional finer-level partition containing over 30
communities, which is clearly not supported by the data (not shown in figure 4.2).
The quality of the MHKSC results did not change much across multiple runs or
when varying the parameter t0. Sometimes, however, the algorithm even placed two
clusters on the coarse level into the same community. The bottom right panel of
figure 4.2 shows the result of an OSLOM run on the same simulated data. We note
that OSLOM also identifies the correct communities on the coarse level of hierarchy
(NMI = 1), and that its results on the fine level are also very close to the ground
truth (NMI ≈ 0.99). Furthermore, OSLOM only identifies the two levels of hierarchy
that are indeed supported by the data. The quality of the OSLOM results did not
change much across multiple runs.

4.1.2 Hierarchical Community Detection on Unbalanced Data
with Asymmetrical Hierarchical Structure

Since we have not yet considered the performance of the two algorithms on asym-
metric hierarchical structures and on unbalanced community sizes, we now directly
construct a similarity matrix on which to compare MHKSC and OSLOM. We again
construct three communities on the coarse level and nine communities on the fine
level. In the constructed data set, denote community i on hierarchy j by Cji . The
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Figure 4.2: Results of SNF (fused similarity), MHKSC and OSLOM on simu-
lated multi-view data that exhibits a symmetrical multi-level hierarchical commu-
nity structure with balanced cluster sizes.
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communities are distributed according to

C1
1 =

{
C0

1 , C0
2 , C0

3

}
C1

2 =
{
C0

4 , C0
5

}
C1

3 =
{
C0

6 , C0
7 , C0

8 , C0
9

} (4.3)

where cluster sizes are scaled by the maximum cluster size smax (here chosen to be
150) according to ∣∣∣C0

1

∣∣∣ = d2smax/3e = 100∣∣∣C0
2

∣∣∣ =
⌈
2/3

∣∣∣C0
1

∣∣∣⌉ = 67∣∣∣C0
3

∣∣∣ =
⌈
2/3

∣∣∣C0
2

∣∣∣⌉ = 45∣∣∣C0
4

∣∣∣ = dsmax/2e = 75∣∣∣C0
5

∣∣∣ =
⌈
2/3

∣∣∣C0
4

∣∣∣⌉ = 50∣∣∣C0
6

∣∣∣ = smax = 150∣∣∣C0
7

∣∣∣ =
⌈
2/3

∣∣∣C0
6

∣∣∣⌉ = 100∣∣∣C0
8

∣∣∣ =
⌈
2/3

∣∣∣C0
7

∣∣∣⌉ = 67∣∣∣C0
9

∣∣∣ =
⌈
2/3

∣∣∣C0
8

∣∣∣⌉ = 45.

(4.4)

Entries of the similarity matrix corresponding to the communities on the fine level
are drawn from a normal random distribution N (0.7, σsim). All other entries that
fall within a community on the coarse level are drawn from N (0.45, σsim). The
remaining entries are drawn from N (0, σsim). We here set σsim = 0.25. Then, we
make the similarity matrix diagonal and wrap entries onto the unit interval as was
done in the first part of the simulation study. The matrix is again thresholded to
only keep the top 5% of edges. The resulting similarity matrix is visualized in the
top left panel of figure 4.3. We compare the performance of MHKSC and OSLOM
in the same manner as in the first part of the simulation study.
The lower left panel of figure 4.3 shows the results of a representative run of
MHKSC. We note that the algorithm finds too many communities on the coarse
level (NMI ≈ 0.85) and fails to identify most of the communities on the fine level
(NMI ≈ 0.83). Again, MHKSC finds an additional finer-level partition containing
over 20 communities that are not supported by the data (not shown in figure 4.2).
Setting t0 to higher values removes this third level of hierarchy, but then the algo-
rithm splits the true communities in the data in a seemingly arbitrary manner. The
lower right panel of figure 4.3 shows the results of a representative run of OSLOM.
We note that OSLOM again identifies the correct communities on the coarse level
of hierarchy (NMI = 1), and that its results on the fine level are still very close to
the ground truth (NMI ≈ 0.98). Again, OSLOM identifies only the two levels of
hierarchy which are actually supported by the data. A visualization of the com-
munity structure found by OSLOM is shown in the upper right panel of figure 4.3,
where nodes are colored by their fine-level community assignments. Nodes that were
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Figure 4.3: Results of MHKSC and OSLOM on a simulated network exhibiting
multi-level hierarchical community structure with unbalanced cluster sizes.
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assigned to more than one community are displayed in black. For more information
on network visualization see section 4.6.
We assume that the relatively poor performance of MHKSC is due to the rather
greedy sequential approach of selecting all neighbors of a node within the given
distance threshold to be in the same community, thus disregarding the fact that
any of those nodes may better fit into another community (see section 3.2.2). On
the contrary, OSLOM is a more robust approach since it relies on the statistical
significance of each community within the network and uses the consensus results
of multiple runs. We conclude that OSLOM is most likely a better choice than
MHKSC for our application to GBM sequencing data.

4.2 Data and Preprocessing

In this analysis we use gene expression, copy number aberration (CNA) and DNA
methylation sequencing data from Glioblastoma Multiforme (GBM) tumor samples.
All data was downloaded from The Cancer Genome Atlas database (TCGA, Wein-
stein et al. [2013]). We removed from the data set those tumor samples that had no
data available for any of the three data types. While expression and CNA levels are
given for each gene, methylation data is annotated by the Illumina human methyla-
tion sequencing platform (27k) probe identifier, thus making it necessary for further
analysis to map methylation probes to the genes available in the rest of the data.
Since such probes can be placed anywhere on those DNA’s bases that can be methy-
lated, and since genes may be overlapping, it is possible that multiple probes map to
the same gene and also that a single probe maps to multiple genes. In case of a single
probe mapping to more than one gene, we considered this probe’s data a candidate
for each of the genes. If multiple probes mapped to a single gene, out of the probes
with no missing values, we selected the one that had the lowest correlation to that
gene’s expression data, as it was done in the TCGA GBM publication by Brennan
et al. [2013]. After mapping methylation data to genes, we only kept those genes
in the data set which had no missing values in any of the three data types. This
resulted in expression, CNA and methylation data views for ngenes = 7758 genes, for
each observation from at total of npatients = 270 patients. Finally, we standardized
the data of each view in a patient-wise fashion. This means that for each view and
each patient, we subtracted the mean of the data of all genes from the given values
and then divided them by their standard deviation. All data pre-processing was
carried out in the R language for statistical computing [R version 3.5.0, 2018].

4.3 View-Specific Similarity Estimation

A straightforward way – and the most popular choice – to estimate the similarity
between two genes is to use their standard "Pearson" correlation [Pearson, 1895,
Qin et al., 2003, Fehrmann et al., 2015, Tzfadia et al., 2016]. High-dimensional
molecular sequencing data, however, is generally rather noisy and often contains
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outliers [Yang et al., 2002, Wang et al., 2005]. In addition, clustering results are
highly dependent on the underlying similarity measure. Since Pearson’s correlation
is based on sample averages, it can be heavily affected by a few or even a single
measurement [Maronna et al., 2006, Huber, 2011]. We would therefore prefer a
pairwise similarity measure that is more stable to perturbations in the observed
sample. Other popular choices that are thought to be more robust to outliers since
they are based on ranks of the observations are Spearman’s rank-order correlation
[Spearman, 1904] and Kendall’s tau [Kendall, 1938]. While these measures are more
robust, they often exhibit low finite-sample efficiency and may not behave optimally
in the case of high-dimensional sequencing data [Abdullah, 1990, D’haeseleer et al.,
1998]. To solve the problem of finding a pairwise similarity estimator that is robust
to outliers, various other approaches have been proposed [Shevlyakov and Smirnov,
2011].
We here choose the absolute median deviation-based MAD correlation coefficient
[Pasman and Shevlyakov, 1987, Hampel, 1974], which has shown to yield good re-
sults in terms of robustness, bias in small samples, and scalability [Shevlyakov and
Smirnov, 2011, Serra et al., 2018]. Given a sample of observations x = (x1, x2, . . . , xn),
the median absolute deviation is defined as

MAD(x) = med
({
|xi −med(x)|

}
i∈{1,2,...,n}

)
, (4.5)

where |·| denotes the absolute value and med(·) is the median. The MAD correlation
coefficient between two variables x and y is then given by

rMAD (x,y) = MAD2(u)−MAD2(v)
MAD2(u) + MAD2(v)

, (4.6)

where u and v are the robust principal variables

u = x−med(x)√
2MAD(x)

+ y −med(y)√
2MAD(y)

and v = x−med(x)√
2MAD(x)

− y −med(y)√
2MAD(y)

. (4.7)

To obtain the similarity matrices S(v) for our three views v ∈ {expression, CNA
, methylation}, we calculated all the ngenes(ngenes − 1)/2 pairwise MAD correlation
coefficients between all genes, for each view. The MAD correlation matrix estimation
was done in R, using parts of the code published by Serra et al. [2018].

4.4 Network Fusion

Given its good results in the simulation study, we employ Similarity Network Fusion
[Wang et al., 2014] to fuse the view-specific similarity matrices into a single gene-
gene similarity network. As input for affinity matrix construction, we use the three
distance matrices 1 −

∣∣∣S(v)
∣∣∣ , v = {expression, CNA , methylation}. We set the

number of nearest neighbors for affinity matrix construction to K = 500, which is
less than the approximately ngenes/10 neighbors suggested by the authors, but this
value seems reasonable given the large number of genes and the fact that genes
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Figure 4.4: Comparison of the distributions of rMAD-derived similarity values for
each view and the simulated data from the first part of the simulation study.

usually do not interact with that many other genes. We also tried a few other
values of K but found that the choice of this parameter did not significantly alter
the community structure of the resulting fused network. We here use the same value
of the RBF kernel parameter σRBF = 0.5 as in the simulation study due to the fact
that the MAD correlations of our data are similarly distributed on the unit interval
as the values we chose for the different views in the simulation study (see figure 4.4).
We ran SNF for T = 20 iterations to ensure proper convergence.
The fused similarity matrix was thresholded to retain only the strongest p = 1%
weights in the network, which resulted in a cutoff value of approximately 0.15. The
motivation behind keeping a lower percentage of edges than in the simulation study
was the fact the real-world biological networks tend to be very sparse [Boccaletti
et al., 2006], and that values lower than the thresholds likely represent noise or
artifacts from the network diffusion process in SNF. We tried a few different per-
centages, but we found that keeping p � 1% of edges did not result in detecting a
very significant hierarchical community structure when using OSLOM, and it also
made it virtually impossible to illustrate the resulting network with all its edges in
a way that allows for intuitive visual exploration of the data. Furthermore, setting
p � 1% resulted in too few edges to effectively detect the network’s community
structure using OSLOM. We use the edge list representation (see section 1.1.5.1)
of the resulting thresholded (i.e. sparse) network to efficiently store all underlying
information. Our network fusion step made use of the MATLAB implementation of
SNF published by Wang et al. [2014].
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4.5 Multi-Resolution Community Detection

Based on its remarkable results in our simulation study, we use (OSLOM, Lanci-
chinetti et al. [2011]) for identifying the multi-level hierarchical community structure
of our SNF-fused, thresholded gene-gene association network. We set the p-value
for statistical significance of a cluster to tOSLOM = 0.1. This choice is based on
the fact tOSLOM � 0.1 gave very few, large communities, many of which did not
seem to be significantly related to any biological function. On the contrary, setting
tOSLOM � 0.1 resulted in too many very small communities, making it very difficult
to visually explore the data. If the research goal were not the exploration of the
large-scale structure emerging from all gene-gene associations in the network but
rather the identification of the role of a few pre-selected genes, then smaller values
of tOSLOM would also be reasonable. To obtain robust estimates for the multi-
resolution community structure in our network, we use the consensus community
partition results of 100 runs on the finest level, and 200 runs on all coarser levels of
the hierarchy. We make use of the implementation published by Lancichinetti et al.
[2011], which was written in the C++ programming language [Stroustrup, 2000].

4.6 Visualization of Multi-Resolution Networks

For visualization purposes, we use additional C++ code published by Lancichinetti
et al. [2011] to write files for each level of hierarchy in the Pajek (.net) format,
which was developed for analysis and visualization of large networks [Batagelj and
Mrvar, 2004]. To be able to handle custom edge colors in our visualization, we
further convert Pajek .net-files to the GUESS graph exploration (.gdf) format [Adar,
2006]. Here, a two-dimensional position for the visual representation of each node is
assigned the same value across the files for all hierarchies. Nodes that are uniquely
assigned to the same community on the finest level of hierarchy are placed closest
together. Nodes that get assigned to the same community on increasingly higher
levels are visualized at growing distances from each other. Nodes that belong to
multiple communities are assigned a position that is between the positions of the
nodes assigned to these different communities. On levels higher than the finest level
of hierarchy, entire communities are considered "super-nodes" with a joint central
position for this purpose. In each Pajek/GDF file representing a certain level of
hierarchy, the nodes are assigned different colors, according to their community
membership on that particular level. Nodes (or super-nodes) that belong to multiple
communities on the given level of hierarchy are assigned the color gray. Homeless
nodes (i.e. those that are not assigned to any community) are assigned the color
white. In addition, we here assign to each node a label, which makes it possible
to identify the node by its respective gene identifier. Edge weights between two
nodes are taken to be the pairwise similarity between the respective genes as defined
by the corresponding values in the thresholded fused similarity matrix. For easy
implementation of our entire approach presented up to here, we have compiled a
main MATLAB script that calls all the appropriate R and Python files, as well as

62



4. Methods

Figure 4.5: An example visualization of the finest-level community partition of a
part of our GBM network in Gephi, together with a further zoomed in illustration
of a single community that makes it possible to identify nodes by their labels.

the executables compiled from C++.
The Pajek and GDF network files obtained by this procedure can be loaded into
graph visualization programs such as Pajek1 [Batagelj and Mrvar, 1998, De Nooy
et al., 2011] or Gephi2 [Bastian et al., 2009]. We here chose Gephi for the simple
reason that it is open-source software that runs on the Windows, Mac OS X and
Linux operating systems, and since it supports both Pajek and GDF files. After
loading our files into Gephi, we interactively changed the appearance of our graph
to obtain a final illustration that is easily explorable and visually appealing. In
particular, we modified node and label sizes, changed edge and label colors, and
scaled the width of edges to be proportional to their respective weights. An example
of such a visualization of a part of our fused gene-gene association network in GBM
is shown in figure 4.5. Here, nodes are colored according to the community partition
on the base level of the hierarchy, and edges gradually change their color between the
two colors of the nodes that they are connecting. More visualizations are presented
in chapter 5.

1http://mrvar.fdv.uni-lj.si/pajek/
2https://gephi.org/
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has A′ has A′ sum

in C ′ a genes b genes a+ b = sC′ genes

in C ′ c genes d genes c+ d = sref’ − sC′ genes

sum a+ c genes b+ d genes a+ b+ c+ d = sref’ genes

Table 4.1: An example 2 × 2 contingency table for the illustration of Fisher’s
exact test to determine p-values for the overrepresentation of a certain biological
annotation A in a community of genes C.

4.7 Gene Set Overrepresentation Analysis

To check whether the community structure identified in our network is biologically
meaningful, we carry out gene set overrepresentation analyses [Mi et al., 2013, Subra-
manian et al., 2005] on the different groups of genes that are defined by the OSLOM
community detection results. For each community under consideration, this means
that we analyze human (homo sapiens) biological annotations of the corresponding
list of genes, and compare it to the annotations of a reference list containing all the
genes that were used in our study.
The goal is to find out whether a certain biological annotation is overrepresented in
the given community, which would mean that we find more genes with that particular
annotation within the community than we would expect in a list of genes of the same
size that was randomly subsampled from the reference list. The fold change of an
overrepresented annotation indicates the magnitude of change between the number
of respective genes that are expected for a random subsample of the reference list,
and the actual number of such genes that are observed in the given community. For
instance, consider a reference gene list of size sref = 1000, in which a total number
of sA = 100 genes are biologically annotated with the class A = "immune response".
Assume we are examining a community C of size sC = 250, and we find that 50 genes
inside the community are annotated with "immune response". If we just randomly
drew 250 genes from the reference list, however, we would expect to find about 25
such genes in the sample. This implies a 2-fold change because we found twice as
many genes annotated with "immune response" as we would have expected.
Due to the stochastic nature of the process, it is always possible to obtain more than
the expected number of genes when sampling from the reference list at random.
Therefore, we also want to assess whether the overrepresentation of any biological
annotation is statistically significant. To this end, we calculate p-values that give
the probability of obtaining observed overrepresentations by pure chance. Hence,
the lower the p-value, the more confident we can be that the overrepresentation of
a certain biological annotation is due to our community detection method rather
than random events. We use Fisher’s exact test [Fisher, 1922, McDonald, 2009] to
determine these p-values. Assume that we have a reference list of size sref’ and want
to assess the statistical significance of some annotation A′ in a community C ′ of size
sC′ . As illustrated in table 4.1, denote by a the number of genes inside C ′ with A′,
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by b the number of genes inside C ′ without A′, by c the number of genes outside C ′
with A′, and by d the number of those outside C ′ without A′. Then, Fisher’s exact
p-value is given by hypergeometric distribution

p =

(
a+ b

a

)(
c+ d

c

)
(
sref’
a+ c

) =

(
a+ b

b

)(
c+ d

d

)
(
sref’
b+ d

) = (a+ b)! (c+ d)! (a+ c)! (b+ d)!
a! b! c! d! sref’!

.

(4.8)
In our above example for the annotation "immune response", we would obtain a = 50,
b = sC − a = 250 − 50 = 200, c = sA − a = 100 − 50 = 50 and d = sref − sC −
c = 1000 − 250 − 50 = 700. Plugging the values into equation 4.8, this gives
p ≈ 7.40× 10−9. This means that the probability of finding the above-mentioned 2-
fold change in "immune response" in our community by pure chance is approximately
7.40 × 10−9. This is very unlikely, so we could be very confident that it is a result
of our community detection method.
To decide which findings we consider significant, we have to define a certain sta-
tistical significance level αp. A common approach is to consider results with p <
αp = 0.05 to be statistically significant. Since we are, however, checking multiple
biological annotations for possible overrepresentation, this will result in a number
of false discoveries. For example, if we are checking 1000 different annotations
for overrepresentation in a community based on a statistical significance level of
αp = 0.05, we could still expect to make about 50 false discoveries. Hence, we use
the Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995] to adjust the
raw p-values obtained by Fisher’s exact test for this False Discovery Rate (FDR).
Given an FDR significance level αFDR and a list of p-values (p1, p2, . . . , pm) with
pi ≤ pj ∀i, j ∈ {1, 2, . . . ,m} corresponding to all m hypotheses to be tested, the
method finds the smallest number k such that pk ≤ k

m
αFDR. Then, any raw p-value

pi with i ≤ k is considered significant on the level αFDR. For our analysis, we choose
αFDR = 0.05.
We used the Gene Ontology (GO) database [Consortium, 2016] to test for overrepre-
sentation of annotations in molecular function, biological process and cellular com-
ponent. The Reactome database [Croft et al., 2013] and the PANTHER database
[Mi et al., 2016] were utilized to check for overrepresentation of pathways and protein
class, respectively.
Since we are here checking several communities in the network for overrepresen-
tations, a further adjustment for this additional layer of multiple testing would
technically be necessary. This, however, is outside the scope of this thesis. The
main goal here is to show that our approach does indeed produce communities that
are biologically relevant. We therefore just check a handful of communities on the
base level of the hierarchy and report FDR values that are not adjusted for for mul-
tiple community testing. If we would check all communities on the fine hierarchy for
all annotations and all databases, a further upward adjustment of the lowest FDR
values by a factor of roughly the total number of communities times the number
of databases would be necessary. Our approach found a little over 200 communi-
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ties on the base level of the hierarchy and we used five different databases, so this
would imply an upward adjustment of the lowest FDR values of about three orders
of magnitude. The lowest FDR values that we found by only checking a handful of
communities, however, were many orders of magnitude lower. Hence, we can safely
assume that our approach finds biologically relevant communities without having to
check every single community in the network and further adjusting FDR values.
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‘In some strange way, any new fact
or insight that I may have found
has not seemed to me as a
“discovery” of mine, but rather
something that had always been
there and that I had chanced to
pick up.”

– Subrahmanyan Chandrasekhar

This chapter covers the main results of the application of our multi-view hierarchical
community detection approach to the GBM data. Section 5.1 presents the visual-
ization results of the network. Section 5.2 briefly reports a few network statistics.
Section 5.3 presents the results of the overrepresentation analysis of biological anno-
tations, for a few select communities on the base hierarchy. Section 5.4 discusses a
particular community grouping together genes that seem to be of special importance
in Glioblastoma Multiforme.

5.1 Visual Exploration of the Hierarchical Com-
munity Structure

We used Gephi to visualize the final network as described in section 4.6. Figure
5.1 shows illustrations of the entire network, each colored according to the different
community positions on the indicated level of the hierarchy. We observe that our
network does indeed exhibit a remarkable community structure, with many groups of
nodes being very densely interconnected while at the same time being well-separated
from the rest of the network. This striking community structure is predominantly
captured by OSLOM on the finest level of the resulting hierarchy. We can, however,
also visually verify that the algorithm joins those communities that share over-
proportionally many edges earlier than those that are most separated as it moves
up the hierarchy. We therefore conclude that multi-level hierarchical community
structure of the fused GBM gene-gene association network can be effectively explored
by our visualizations.
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Figure 5.1: A visualization of the fused GBM gene-gene association network using
the multi-level hierarchical community structure found by OSLOM. Nodes are col-
ored according to their community membership on each level of the hierarchy. The
bottom right panel presents a more detailed view of part the ground level, zoomed
in on the area indicated by the gray rectangle in the upper left panel.
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Figure 5.2: A part of the visualized fused GBM gene-gene association network with
gene labels, colored according to the OSLOM community partition at the finest level
of hierarchy.

Since Gephi makes it simple to zoom into the network visualization, and to manually
adjust various aspects of its appearance, it is easy to magnify certain parts of the
graph or single communities under interest. When eximining certain communities or
groups of communities in detail, it is also possible to show individual gene identifiers
directly on the graph in the form of text labels. Figure 5.2 shows and example of
such a more detailed view on part of the graph. Particular gene identifiers may
also be searched among the list of node labels and then selected and shown directly
in a zoomed-in of the network visualization. It is then also possible to add all the
neighbors of that particular gene to the selection, and examine the relationships
between them. This means that the role of certain genes of assumed importance in
GBM within the whole association network can be swiftly explored in an intuitive
manner.
We also included the possibility to color edges according to the underlying view
of the data in which that edge is supported strongest, relative to all other edges
in that view which survived the thresholding process. Figure 5.3 shows the result
of coloring edges in this fashion for the entire GBM network. We note that the
majority of clusters seems to be supported by all underlying views of the data.
There are, however, a few communities that seem to be supported by only a single
view, or only by a combination of two of the views used here. Such information
can provide further valuable biological insights about why certain groups of genes
cluster together and what that implies for our understanding of how GBM "works".

69



5. Results

Figure 5.3: A representation of the fused network in which each edge is colored ac-
cording to the view of the data in which that particular edge is supported strongest,
relative to the other edges that survived the thresholding process.
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While Wang et al. [2014] compared the raw values of the data underlying any par-
ticular edge in each of the views, we here decided to employ a relative, rank-based
approach since the distributions of the similarity values in the different views have
significantly different shapes (see figure 4.4). Due to the fact that the fusion and
thresholding processes favor large values of similarity to be represented in the final
network, the view-specific similarity values corresponding to the edges in the final
network will mainly lie within the upper tails of the individual views’ similarity
value distributions. Since the CNA-based similarity matrix contains significantly
more values in the interval [0.9, 1] the approach of Wang et al. [2014] would indi-
cate that the majority of the edges are supported by the CNA data. While it is
reasonable to assume that the community structure of the final network is indeed
significantly influenced by the heavy tail of the CNA similarity distribution, the
non-linearity of SNF and the subsequent thresholding step make it difficult to assess
the magnitude of the impact that each view has on the final results. For example,
it is not only the within-cluster edges that determine the final community structure
of the network, but also the absence of strong inter-community edges. While the
presence of strong edges is favored by very high similarity values in the underlying
data views, their absence is favored by rather low similarity values, which are more
frequently encountered in the gene expression view. A way to determine the im-
portance of the distinct views on the community structure of the SNF result would
be to detect communities for each view of the data, and compare agreements of the
results to communities identified in the fused data. Running OSLOM on the entire
similarity matrix of each individual view and the fused view, however, proved to be
too computationally expensive. Furthermore, applying OSLOM to the respective
thresholded matrices would likely not result in any useful information since any of
the non-zero similarities in a particular view can be quite significant in SNF, de-
pending on their nearest neighbors and their corresponding similarities in the other
views.

5.2 Network Statistics

We here briefly report a few basic statistics about our GBM network and the com-
munity structure identified by OSLOM. Table 5.1 summarizes some of the most
important information. We observe that there are very few "homeless" nodes, which
are not assigned to any community. Such nodes have a very low average degree,
which means that the respective genes are not very similar to any of the the other
genes included in this study. Furthermore, the vast majority of genes is uniquely
assigned to a community on the fine levels of the hierarchy, which is important to
allow for an intuitive and easy visual exploration of the data. Despite the network’s
large size and sparsity, the average path length between two nodes is very short,
which implies that the network exhibits the small-world property, which is claimed
to hold for most large-scale complex networks [Watts and Strogatz, 1998].
Figure 5.4 shows the weighted degree distribution of the final network. Since it is
often claimed that real-world complex networks exhibit degree distributions that
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level of hierarchy (if applicable) 0 1 2 3 4

number of nodes 7758
number of edges 300933

average weighted degree 15.23
average path length 4.63

number of communities 218 69 32 22 17
average community size 38.47 116.77 296.53 421.73 524.12
number of covered nodes 7575 7593 7593 7593 7593
fraction of homeless nodes 2.36 % 2.13% 2.13% 2.13% 2.13%

average memberships of covered nodes 1.11 1.06 1.25 1.22 1.17
average degree of homeless nodes 0.098 — — — —

Table 5.1: Some basic network statistics describing the multi-level hierarchical
structure identified by OSLOM in our fused GBM network.

follow a power law [Song et al., 2005], we fit a power-law distribution to the data.
We note that the degree distribution in our network can be claimed to approximately
follow a power law, but that there is a significant number of nodes that have higher
weighted degrees on the interval [20, 40]. We attribute this to the fact that the
network has many very distinct communities on the base level of the hierarchy that
seem to be nearly fully connected by relatively strong weights and have an average
community size of approximately 38 (see table 5.1).

5.3 Communities Related to Biological Function

The aim of this thesis is to propose a method for identifying the multi-resolution
community structure in gene-gene association networks based on multi-view data,
and not a complete biological analysis of the results obtained from its application.
Therefore, it is here sufficient for us to show that the method indeed finds biologi-
cally relevant groups of interacting genes, by only checking a few communities for
statistical overrepresentation of biological annotations, as described in section 4.7.
Due to the fact that many communities on the finest level of the hierarchy seem
to consist of genes that cluster together very well and are often also well-separated
from other communities, we limited our analysis to the base hierarchy. Table 5.2
lists a few communities that we checked for biological overrepresentation and showed
significant results based on an FDR-rate of αFDR = 0.05. P-values are FDR adjusted
to correct for testing multiple annotations. The OSLOM score indicating the statis-
tical significance of a community is denoted "bs" here. Any fold-overrepresentation
that is denoted by 100 here means that the actual fold-change was ≥ 100. We point
out that the lowest p-values that we obtain are on the order of 10−16, and therefore
highly statistically significant. Furthermore, it can be observed that some of the
most significant results are related to immune responses, mitotic cell division and
cell death – all highly relevant in cancer. We thus conclude that our method indeed
provides a community structure in gene-gene association networks that is biologi-

72



5. Results

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

Figure 5.4: The weighted degree distribution of the fused GBM network, along
with a power law fit to the data.

cally relevant and may be further explored to shed light on the inner workings of
brain cancer.

5.4 A Potentially Important Community for Glioblas-
toma Multiforme

To exemplify how individual communities or genes could be further analyzed in
the context of our fused GBM network, we now turn our focus on one particular
community that shows promise to reveal further insight into the inner workings of
GBM. The community we chose for this purpose is the blue one that is labeled
"# 8" in table 5.2. We chose this particular community due to the fact that it
demonstrates consistently high fold-changes for the biological annotations that were
found to be overrepresented by the genes in the community, and due to the fact that
the associated FDR-corrected p-values are all quite low. Furthermore, we found that
the genes in this community were mainly related to immune system response and
related processes such as interferon (IFN) signalling, which have been shown to play
important roles in cancer, and brain cancer in particular [De Visser et al., 2006,
Reiche et al., 2004, Friese et al., 2004].
In addition, the community includes the genes CDKN2A (Cyclin-dependent kinase
inhibitor 2A) and EGFR (Epidermal growth factor receptor), which are among the
genes that are most frequently altered in GBM [Ueki et al., 1996, Frederick et al.,
2000, Wong et al., 1987, Parsons et al., 2008]. Figure 5.5 illustrates this community
in two manners. The left panel shows nodes and edges in the colors that were
assigned to the different communities on the finest level of the hierarchy (same
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level # color size bs image biological annotation (GO/Panther/Reactome) fold p-value example genes (max 20)

0 1 Plum 30 0.658836

keratine filament 100 1.57E-16 KRT1, KRT2, KRT5, KRT6A, 
KRT6B, KRT8, KRT75, KRT76, 
KRT83, KRT85, KRT86, ESPL1, 
DYRK2, LALBA, MMP19, MIP, 
AQP2, TSPAN8, IL26, INHBE

cornification (type of programmed cell death that occurs in 
the epidermis) 39.51 8.78E-11

programmed cell death 5.34 1.75E-04

0 2 Yellow 23 7.59E-01

cell cycle, mitotic 20.78 2.26E-15 CDCA8, KIF2C, KIF14, KIF23, 
CCNA2, CCNB2, PLK1, 

CENPA, BUB1B, NCAPH, 
AURKB, SPC25, BUB1, NEK2, 
ASPM, CENPE, ODC1, RRM2, 

MCM6, UCK2

cell division 21.55 4.82E-15
sister chromatid segregation 46.06 6.40E-15
chromosome 28.88 2.82E-07
microtubule motor activity 50.15 3.22E-04

0 3 Cerulean 23 9.16E-01

MHC protein complex 100 1.14E-12

HLA-DMA, HLA-DMB, HLA-C, 
HLA-DRA, HLA-E, HLA-DPB1, 
HLA-DQB1, HCP5, TRIM38, 

TREM2, C2, SERPINB9, 
SERPINB1, HLA-F, CFB, DEF6, 

CD83, AIF1, MAPK13, MDFI

lumenal side of endoplasmatic reticulum membrane 100 6.47E-09
major histocompatibility complex antigen 100 7.05E-08
immune response 6.04 3.71E-07
inferon-gamma-mediated signalling pathway 53.06 6.19E-07
antigen processing and processing of peptide antigen 21.55 5.09E-06
positive regulation of T cell activation 16.53 1.70E-04
peptide antigen assembly with MHC class II protein complex 100 4.14E-04

0 4 Bittersweet 23 1.13E-01

DNA binding transcription factor activity 7.92 6.16E-12 ZNF134, ZNF135, ZNF211, 
ZNF175, ZNF274, ZNF304,  
ZNF329, ZNF350, ZNF432, 
ZNF444, ZNF544, ZNF551, 
ZNF551, ZNF573, ZNF587, 
ZNF606, ZNF667, ZNF671, 

ZSCAN18, LSM14A

transcription, DNA-templated 5.33 3.10E-08

regulation of transcription by RNA polymerase II 4.49 5.27E-07

metal ion binding 3.39 4.73E-06

C2H2 zinc finger transcription factor 23.06 3.12E-03

0 5 Peach 31 7.22E-01

intermediate filament 40.82 6.60E-12 KRT12, KRT15, KRT19, KRT23, 
KRT24, KRT31, KRT32, 

KRT33B, KRT34, KRT36, 
KRT38, VTN, FOXN1, SOX15, 

OR1A1, OR3A1, OR3A3, CCL7, 
CCL13, DNAH17

keratinocyte differentiation 30.59 2.75E-11

cornification 42.06 3.91E-11

skin development 17.92 4.23E-09

0 6 Pine Green 33 7.79E-01

histone 89.07 1.31E-11 HIST1H4G, HIST1H2BJ, 
HIST1H4A, HIST1H4E, 

HIST1H2BK, HIST1H1E, 
HIST1H2BI, HIST1H2BE, 
HIST1H2BC, HIST1H1D, 

HIST1H2BD, TAF11, DAXX, 
PRL, HFE, RANBP9, SNRPC, 

JARID2, BTN3A1, C6orf62

nucleosome 76.87 3.59E-10
nocleosome assembly 53.5 1.58E-09
chromatin assembly 46.76 1.66E-09
DNA damage / telomere stress induced senescence 87.67 5.01E-05
innate response in mucosa 100 4.70E-03
histone H3-K27 trimethylation 100 4.26E-02

0 7 Fuchsia 27 1.78E-101

olfactory receptor activity 91.57 1.37E-08 OR10H1, OR7C1, OR7C2, 
OR7A5, OR10H2, OR10H3, 

OR7A17, PDE4C, INSL3, 
PTGER1, F2RL3, CYP4F11, 
CYP4F2, CYP4F2, CYP4F12, 
RNASEH2A, NCAN, DNAJB1, 

PSPN, NOTCH3

detection of chemical stimulus involved in sensory 
perception of smell 91.57 4.95E-08

G-protein coupled serotonin signalling pathway 75.22 2.02E-02

0 8 Blue 25 0.0000132

type I interferon receptor binding 100 2.08E-07
EGFR, CDKN2A, IFNA1, IFNA2, 
IFNA5, IFNA8, IFNA21, RPS6, 

CER1, TEK, PSIP1, MLLT3, 
BNC2, NFIB, MTAP, SNAPC3, 

RPS6, SH3GL2, RRAGA, 
TYRP1

regulation of peptidyl-serine phosphorylation of STAT protein 100 2.96E-06
natural killer cell activation involved in immune response 100 2.97E-06
Regulation of IFNA signaling 100 4.58E-06
T-cell activation involved in immune response 85.59 5.87E-06
B-cell proliferation 86.92 1.96E-05

0 9 Mahogany 30 7.78E-01

cell adhesion molecule 19.41 8.34E-07
CD1D, CD2, CD48, CD53, 

CD84, CD244, IL6R, RGS1, 
PTPRC, CTSS, FCER1G, 
SLAMF7, SELL, FCGR2A, 
FCGR3B, S100A8, MR1, 

CREG1, MNDA, NCF2

immunoglobulin receptor superfamily 44.53 1.65E-06
immune response 4.95 1.28E-05
neutrophil mediated immunity 8.73 6.64E-05
leukocyte migration 10.41 6.56E-04
Cell surface interactions at the vascular wall 18.46 1.85E-03
IgG binding 100 1.79E-02

0 8 Process Blue 34 9.54E-102

gamete generation 30.17 1.17E-06
MAGEC1, MAGEA5, MAGEB4, 
MAGEA10, MTM1, MAGEB2, 

MAGEA8, VSIG4, EDA2R, 
SERPINA7, PAGE1, F9, 

SLC6A8, SSX5, LUZP4, CDR1, 
AGTR2, GABRE, ITM2A

cell adhesion molecule 13.68 1.12E-03

0 11 Gray 21 1.29E-101

[all nodes overlapping with 
other communities → no 
individual visualization of 
the community available]

cell periphery 2.74 8.92E-06 CLEC4A, PIK3CG, VAMP8, 
ITGAM, SLC7A7, LAIR1, LRMP, 
BIN2, FCGR3B, CD37, CD86, 
HCLS1, PTPN6, NCKAP1L, 

NCF2, PLEK, AIF1, SELPLG, 
SLCO2B1, ADORA3, 

immune system process (17 out of 21 genes) 4.4 1.36E-05

myeloid leukocyte activation 10.15 9.04E-05

regulation of cell adhesion mediated by integrin 46.57 2.34E-02

0 12 Cyan 26 1.07E-01

transcription, DNA-templated 4.31 2.08E-04 MEGF8, CARD8, ZNF83, 
ZNF180, ZNF222, ZNF223, 
ZNF227, ZNF230, ZNF345, 
ZNF415, ZNF480, ERCC2, 

SUPT5H, CIC, RBM42, MLL4, 
CNOT3, PRKD2, GPATCH1, 

XRCC1

regulation of RNA biosynthetic process 3.75 2.70E-05

DNA binding transcription factor activity 5.02 1.20E-03

generic transcription pathway 9.92 9.14E-06

0 13 Purple 27 4.61E-01

G-protein coupled chemoattractant receptor activity 100 9.22E-06 CCR3, CCR4, CCR9, CX3CR1, 
XCR1, SEMA3B, SEMA3G, 
GNAT1, PPP4R2, GRM2, 

MST1R, ACOX2, LIMD1, ITIH1, 
MOBP, CAV3, TGM4, TNNC1, 

CLEC3B, HESX1

cell death 6.39 2.10E-02
cytokine receptor activity 46.57 2.32E-05
locomotion 11.55 2.58E-04
chemokine receptors bind chemokines 43.46 3.25E-04

0 14 Royal Purple 131 6.14E-01

muscle structure development 6 3.10E-05 C1orf35, EGLN1, ACTA1, 
MYOG, AGT, ZNF238, BTG2, 

TGFB2, TNNI1, MYBPH, 
KCNH1, ACTN2, HNRNPU, 

OBSCN, CENPF, ATF3, RYR2, 
HLX, PROX1, CD55

negative regulation of protein activation cascade 62.81 2.53E-03

negative regulation of complement activation 100 6.99E-03

Table 5.2: A (non-comprehensive) list of communities on the base hierarchy in
which gene sets with certain biological annotations were overrepresented.
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Figure 5.5: Visualization of a community that could be particularly relevant for a
better understanding of GBM.

as in figures 5.2 and 5.1). It also features large node labels that make the gene
identifier related to each node easily readable. The right panel shows nodes in black
and edges in colors that represent the underlying view in which the edge is most
strongly supported relative to all other similarity values in that view associated with
an edge in the graph (same as in figure 5.3). Here, node labels were chosen to be
smaller to make it easier to identify the color of the edges close to any particular
node. The left panel of figure 5.5 makes it obvious that genes CDKN2A and TYRP1
(5,6-dihydroxyindole-2-carboxylic acid oxidase) belong to both the blue community
we are examining here and the jungle green community shown right below it (not
featured in table 5.2).
Since this community seems very important in GBM, it is worth exploring the func-
tion of other genes that are included. Many of these genes have been associated to
GBM and cancer in general in the literature. For instance, interferon alpha (IFNA)
has antiangiogenic activity, thus suppressing cell proliferation in cancer by inhibiting
the formation of new blood cells that tumors need to grow [Von Marschall et al.,
2003]. The gene KLHL9 (Kelch-like protein 9) has been identified as a causal ge-
netic driver of GBM, with deletions being associated with poorest survival [Chen
et al., 2014]. NFIB (nuclear factor 1 B-type) has been shown to induce differen-
tiation and to inhibits the growth of Glioblastoma tumors [Stringer et al., 2013].
The community also includes the gene SH3GL2 (endophilin-A1), which is a can-
didate tumor suppressor gene which is particularly highly expressed in the central
nervous system [Giachino et al., 1997, Ringstad et al., 1997]. The gene MTAP (S-
methyl-5’-thioadenosine phosphorylase) has been found to be often deleted in GBM
[Kryukov et al., 2016] Furthermore, an approach modeling network effects of CNA
on transcription in glioblastoma has previously identified both MTAP and SEC61G
(Protein transport protein, subunit gamma) as potentially tumorigenic [Jörnsten
et al., 2011]. The community also includes the gene ELAVL2 (ELAV-like protein
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2), which is related to neuronal proliferation and differentiation [Yano et al., 2005].
Given that all these genes are potentially important in GBM, further biological
analysis of all genes in this community promises new insights into the underlying
mechanisms of the disease. We can further analyze which views of the data support
the edges within our community. The right panel of figure 5.5 follows the same color
scheme as figure 5.3 (expression: blue, CNA: yellow, methylation: red). We note
that edges across the whole community are supported by expression and methyla-
tion, whereas CNA only seems to connect a subset of the genes in the community.
The edges connecting the blue community with the green community are almost
exclusively supported by expression and methylation.
The cluster significance score that OSLOM assigns to this blue community is ap-
proximately bs = 1.3 × 10−5, which is well below our chosen significance threshold
tOSLOM = 0.1, yet much higher than for many other communities on the finest level
of the hierarchy. In figure 5.5, we can clearly see that this is due to the fact that our
blue community is still relatively strongly connected to the jungle green one below it
through the shared genes CDKN2A and TYRP1. This means that it may be worth-
while to also explore the role of the green community, and how it biologically relates
to the GBM-related biological processes overrepresented in the blue community. We
find that the green community can be mainly related to hormone activity (27.09-
fold, FDR= 3.61 × 10−3) and cytokine activity (17.19-fold, FDR= 9.46 × 10−3),
which have both been related to biological processes associated with glioblastoma
[Bonavia et al., 2010, Davis et al., 2006].
As expected if we move up one hierarchy, OSLOM joins the blue and the green
community into one (see figure 5.1), and assigns it a very low cluster significance
score (bs ≈ 3.6× 10−101). Since the two clusters are largely associated with distinct
biological function, however, all statistically significant overrepresentations in this
joint level-1 community are mainly inherited from the base communities and there-
fore result in lower fold-changes and less significant results. This implies that the
"bridge" genes CDKN2A and TYRP1 likely have important roles in connecting the
otherwise separated biological processes in the two communities.
Our example analysis of this blue community was able to find various genes that are
known to play important roles in GBM, and makes it possible to identify further
candidate genes and gene-gene interactions to be further investigated. Thus, we
have shown that our proposed method effectively fuses different views of molecular
profiling data and finds a multi-resolution community structure that is biologically
relevant, and whose exploration promises to give better insights into the inner work-
ings of GBM or other types of cancer.
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“Science never solves a problem
without creating ten more.”

– George Bernard Shaw

6.1 Future Work

We here proposed a two-step procedure that first fuses similarities from different
views of the data, and then identifies the multi-resolution community structure of
the resulting network. Recently, in the field of multi-view learning, a plentitude of
promising methods have been proposed that simultaneously manage data fusion and
community detection tasks [Kumar and Daumé, 2011, Christoudias et al., 2012, Cai
et al., 2013, Liu et al., 2013, Wang et al., 2013, Xia et al., 2014, Cao et al., 2015,
Li et al., 2015, Xu et al., 2015, Liu et al., 2016, Wang et al., 2016, Xu et al., 2016,
Liao et al., 2017, Nie et al., 2017, Wang et al., 2017, Zong et al., 2017, Ni et al.,
2018, Houthuys et al., 2018]. None of those methods, however, are able to identify
hierarchies in the data, many rely on the number of clusters as a user-defined input,
and the computational complexity of the majority of them renders applications to
high-dimensional big data sets infeasible. A plausible option for an approach that
could improve on the method suggested in this thesis could be such a simultaneous
multi-view multi-level hierarchical community detection algorithm, which is self-
tuned and scalable to big data networks. For instance, a possible extension of the
Infomap algorithm [Rosvall and Bergstrom, 2011], allowing for random walks on
multi-level networks would have the potential to solve the data integration and
multi-level hierarchy detection problems simultaneously.
We proposed our method within the framework of gene-gene association networks,
but in theory the approach is applicable to any data that has multiple views and
on which a sensible similarity measure can be defined. For instance, with small
modifications the method could be used to concatenate different omics data types
and rather consider data from multiple databases or distinct patient strata as the
views that need to be fused.
As mentioned in section 4.7, we manually checked only a handful of the identified
communities for overrepresentation of biological annotations, and did not adjust
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them for for the false discovery rate when testing multiple communities or multiple
databases. A useful extension of our approach would thus be an automated testing
for all biological annotations in multiple databases and for all communities, along
with a sensible adjustment of the false discovery rate.
Finally, a rigorous method for determining view importance with regard to the
resulting community structure could be of great help in further analysis of the results.
We acknowledge that in our particular case it seems likely that the relatively large
amount of high similarities in the CNA data could have a significant impact on
the final community structure. These large correlations are mainly due to genes
that are very close to each other on the DNA in the same chromosomal region
and are therefore often copied together by chance. Hence these large similarities
are not necessarily meaningful. Here we have not accounted for this, so a possible
improvement on our method would include and adjustment of CNA similarity values
based on the probability that two genes are copied together by chance.

6.2 Societal and Ethical Aspects

The reliance of big data cancer statistics on large amounts of detailed patient data
brings with it both opportunities and risks. While the availability and analyzability
of a continuous stream of abundant biological and health-related data for distinct
individuals will bring about great advances in personalized treatment, a great em-
phasis has to be placed on data protection and ethical use of personal data. For
instance, making patient data related to behavioral risk factors (such as smoking or
an unhealthy diet) available to health insurers, has the potential to improve public
health by encouraging healthy behavior through flexible premiums. If such data can
be related to preexisting conditions, however, the availability of well-interpretable
personalized data sets puts people with genetic predispositions for certain diseases
at an unfair disadvantage. This means that healthcare professionals and researchers
have a moral obligation to ensure proper data anonymization and protection at each
step of cancer research. Results for certain patient groups should always be put into
perspective with respect to their societal and personal impacts.

6.3 Conclusion

In this thesis, we have proposed a statistical method that is able to identify the
multi-level hierarchical community structure in large-scale multi-view molecular se-
quencing data sets. To our knowledge, this is the first time that such a method
has been proposed. Based on a comprehensive literature review and a simulation
study, we suggested a step-wise procedure. First, the robust Median Absolute De-
viation (MAD) correlation coefficient was used as a similarity measure on each view
of the data. Then, Similarity Network Fusion (SNF) was employed to merge the
joint and complementary information captured by the view-specific similarities. The
multi-resolution community structure of the fused similarity was identified using the
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Order Statistics Local Optimization Method (OSLOM). Finally, to allow for simple
and intuitive exploratory analysis, community detection results were visualized and
related to known biological functions.
The proposed method was successfully applied to gene expression, copy number
aberration and DNA methylation data from Glioblastoma Multiforme (GBM) tumor
samples. The analysis revealed a distinct community structure in the resulting
gene-gene association network. The effectiveness of the method was demonstrated
by identifying multiple communities related to biological functions that play key
roles in cancer. While the effectiveness of the proposed method was verified, several
improvements are thinkable, which were out of the scope of this thesis. We believe
that further research focused on capitalizing on the wealth of information provided
by multiple views of molecular data bears great promise for a better understanding
of how cancer works and how it might be treated in the future.
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